
CS 189/289A Introduction to Machine Learning
Fall 2021 Jennifer Listgarten, Jitendra Malik Midterm

• Please do not open the exam before you are instructed to do so.

• Electronic devices are forbidden on your person, including cell phones, tablets, head-
phones, and laptops. Turn your cell phone off and leave all electronics at the front of the
room, or risk getting a zero on the exam.

• The exam is closed book, closed notes except your one-page cheat sheet. You are allowed
one double-sided handwritten 8.5x11 inch cheatsheet.

• You have 1 hour and 50 minutes (unless you are in the DSP program and have an allowance
of 150% or 200% time).

• Please write your initials at the top right of each page after this one (e.g., write “JD” if you
are John Doe). Finish this by the end of your 1 hour and 50 minutes.

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.

• For multiple answer questions, fill in the bubbles for ALL correct choices: there may be
more than one correct choice, but there is always at least one correct choice. NO partial
credit on multiple answer questions: the set of all correct answers must be checked.

• The last question (Question 8) is for CS289A students only. Students enrolled in CS189A
will not receive any credit for answering this question.
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SID

First and last name of student to your left

First and last name of student to your right

⃝ CS 189A

⃝ CS 289A
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1 Multiple Choice (Single Answer)

1. (1 point) Peanut wants to train a model to accurately classify different types of animals from
images. After training and testing his model, he observes that the model has high training error
and high test error. What can we most confidently say about the bias/variance characteristics
of Peanut’s model?

A. High bias.

B. Low bias.

C. High variance.

D. Low variance.

Solution: A. High bias because the model has high training error.

2. (1 point) Consider a binary classification data set with 9000 positively labelled examples and
1000 negatively labelled examples. What is the area under the ROC curve (AUC-ROC) of
a random classifier that classifies any example as positive with probability π and as negative
with probability 1 − π? Here, the probability π is a hyperparameter.

A. Close to zero.

B. Close to 0.1.

C. Close to 0.5.

D. Close to 0.9.

E. Close to one.

Solution: C. The random classifier has a diagonal ROC curve.

3. (1 point) Again, consider a binary classification data set with 9000 positively labelled exam-
ples and 1000 negatively labelled examples. What is the precision and the recall of a classifier
that always classifies any example as positive?

A. The precision is 0.1, and the recall is 0.9.

B. The precision is 0.9, and the recall is 0.1.

C. The precision is 1.0, and the recall is 0.9.

D. The precision is 0.9, and the recall is 1.0.

E. The precision is 0.1, and the recall is 1.0.

Solution: D. The precision is 9000/10000 = 0.9 since all examples are classified as positive.
The recall is 9000/9000 = 1.0 (perfect recall) since all positive examples are classified as
positive.
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4. (2 points) Assume we are given X ∈ Rn×d and y ∈ Rn for n > d. The Ridge regression
estimator with regularization coefficient λ estimates the weight vector to be

ŵ = arg min
w

(∥∥∥y − Xw
∥∥∥2

2
+ λ∥w∥22

)
. (1)

The Ridge regression estimator is equivalent to the ordinary least squares estimator on which
of the following modified version of X and y?

Id denotes the d × d identity matrix. 0d denotes the all-zero d-dimensional vector, and 1d

denotes the all-one d-dimensional vector.

A.

y′ =
 y
0d

 , X′ =  X
√
λId

 (2)

B.

y′ =
 y
1d

 , X′ =  X
√
λId

 (3)

C.

y′ =
 y
0d

 , X′ =  X
λId

 (4)

D.

y′ =
 y
1d

 , X′ =  X
λId

 (5)

Solution: A.

For the original X and y, the Ridge regression estimator is

ŵ = (XT X + λId)−1XT y.

For the modified X′ and y′, the ordinary least squares estimator is

ŵ = (X′T X′)−1X′T y′.

Therefore, we want to find X′ and y′ such that X′T X′ = XT X + λId and X′T y′ = XT y. For the y′

and X′ given in choice A,

X′T X′ = XT X + (
√
λId)T (

√
λId) = XT X + λId.

X′T y′ = XT y + (
√
λId)T (0d) = XT y.
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2 Multiple Choice (Multiple Answer)

Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there
is always at least one correct choice. NO partial credit on multiple answer questions: the set of
all correct answers must be checked.

1. (2 points) Which of the following statements are TRUE regarding positive semi-definite and
positive-definite matrices?

⃝ “Every entry of a matrix is non-negative” is a necessary but insufficient condition
for a matrix to be positive definite.

⃝ The singular values of a positive semi-definite matrix are the same as its eigenvalues.

⃝ If a matrix A is positive semi-definite, then there exists a matrix B such that BT B = A.

⃝ The covariance matrix of any distribution is positive semi-definite and invertible.

⃝ If the Hessian of a function is positive semi-definite, then the function is convex.

Solution: B, C, and E.

Why A is incorrect: Positive-definite matrices can have negative entries. For example, the
following matrix  1 −0.5

−0.5 1


is positive-definite.

Why B is correct: For a positive semi-definite matrix A, we can apply the spectral decom-
position A = QΛQ−1. The singular values are defined as the square roots of non-negative
eigenvalues of AT A = QΛ2Q−1, so the singular values are the same as eigenvalues.

Why C is correct: If a matrix A is positive semi-definite, we can apply the spectral decomposi-
tion A = QΛQ−1 = QΛQT , where Λ only has non-negative diagonal entries and can be written
as Λ = D2, so A = (QDQT )T (QDQT ).

Why D is incorrect: The covariance matrix of a distribution is always positive semi-definite
but could have zero determinant. For example, a deterministic distribution has zero variance.

2. (2 points) Which of the following statements are TRUE regarding Lasso and Ridge regres-
sion? Let X ∈ Rn×d be the data matrix and y ∈ Rn be the observed labels for the n examples.
Let w ∈ Rd be the weight parameters learned from Lasso or Ridge regression, and let λ be the
regularization coefficient.

⃝ In the Bayesian MAP interpretation, Lasso regression can be interpreted as linear
regression for which the coefficients have Poisson prior distributions.

⃝ In Lasso regression, as the regularization coefficient becomes very large (λ → ∞),
the learned weights from Lasso regression will be close to zero (w→ 0).

⃝ Lasso regression performs both feature selection and regularization.

⃝ There is no unique solution to Ridge regression whenever X is not full rank.
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Solution: B and C.

Why A is incorrect: In the Bayesian MAP interpretation, Lasso regression can be interpreted
as linear regression for which the coefficients have Laplace prior distributions.

Why D is incorrect: There is always a unique solution to Ridge regression when λ > 0 regard-
less of whether X is full rank.

3. (2 points) If the model resulting from Ridge regression is currently overfitting, what are pos-
sible things to reduce overfitting? Select all that apply.

⃝ Collect new data to increase the training data size.

⃝ Repeat the current data twice to increase the training data size.

⃝ Increase the ℓ2 regularization penalty in the loss function.

⃝ Add new features to the model.

⃝ Remove features from the model.

Solution: A, C, and E.

4. (2 points) Which of the following statements about gradient descent are TRUE?

⃝ After a gradient descent update step, the objective function value at the weight vector
is always lower after the update than before.

⃝ There is always a unique steepest descent direction in gradient descent.

⃝ Gradient descent converges to a globally optimal solution for logistic regression
under appropriate assumptions.

⃝ Since ReLU is a convex function, a neural network that uses ReLU activations is
also a convex function, and therefore gradient descent will converge to a globally
optimal solution on neural networks with ReLU activations.

Solution: C only.

Why A is incorrect: If the step size is too large, the objective function value can increase after
an update.

Why B is incorrect: If the gradient is zero along some dimensions, there would not be a unique
steepest descent direction.

Why D is incorrect: The composition of ReLU and linear layers might not necessarily be
convex. For example composing ReLU with f (x) = −x results in a concave function.

5. (2 points) Which of the following statements are TRUE about cross entropy?

⃝ The value of cross-entropy loss is always non-negative.

⃝ Cross-entropy loss is only suitable for binary classification but not for multiclass
classification.

⃝ For two discrete probability distributions P and Q, the KL divergence is symmetric,
i.e. DKL(P||Q) = DKL(Q||P).
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⃝ Minimizing the cross-entropy is equivalent to maximizing the likelihood with re-
spect to the model parameters.

Solution: A and D.

6. (2 points) Which of the following statements are TRUE about cross validation? In this prob-
lem, the final test set is not involved in the cross validation process.

⃝ During the k-fold cross validation process, precisely k models are trained on different
subsets of the data.

⃝ During the k-fold cross validation process, precisely k − 1 models are trained on
different subsets of the data.

⃝ During the k-fold cross validation process, we need to draw k random seeds to shuffle
the data precisely k times.

⃝ At the end of the k-fold cross validation process, we choose hyperparameters that
minimize the highest validation loss among the different splits.

Solution: A only.

Why C is incorrect: During the k-fold cross validation process, we only need to shuffle and
split the data once.

Why D is incorrect: At the end of the k-fold cross validation process, we choose hyperparam-
eters that minimize the average validation loss among the different splits.

7. (2 points) Which of the following statements are TRUE about principle component analysis
(PCA)? Given n data points of dimension d, X ∈ Rn×d, assume that we are performing PCA to
reduce the dimension of the data to k where k < d. Which of the following would result in a
DIFFERENT PCA basis? Recall that the PCA basis is a set of unit vectors.

⃝ Multiplying all columns in X by a factor of two before performing PCA.

⃝ Multiplying the first column in X by a factor of two before performing PCA.

⃝ Replacing the first column of X by the sum of all columns (including the first col-
umn).

⃝ Not subtracting the mean from X before performing PCA.

Solution: B, C, and D.

Why A would not result in a different PCA basis: Multiplying all columns in X by a factor of
two would double the eigenvalues but would not change the basis.

8. (2 points) Which of the following statements are TRUE about weight updates in neural net-
works?

⃝ Typically, the weights in all hidden layers are initially all set to zero.

⃝ If using the mean squared error loss, the weight changes in the last layer are propor-
tional to the difference between the model output and the true labels.

⃝ The weight changes in a particular hidden layer are proportional to the input to that
weight layer.
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⃝ Weight updates are computed in the forward pass of the network.

Solution: B and C.

Why A is incorrect: See Problem 2 in Discussion 3.

Why D is incorrect: Weight updates are computed in the backward pass of the network.
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3 Fishing
1. (6 points) Rumble is fishing by a lake and catches n fish. She records the time she must wait

in between catching each fish as xi minutes, where xi denotes the time she had to wait between
catching fish (i − 1) and fish i. After catching n fish and collecting data points x1, · · · , xn,
Rumble heads home for dinner. Rumble knows that the xi’s are distributed according to a
Poisson distribution, Poisson(λ), for some unknown rate λ ∈ R+.

Recall that the probability mass function for a Poisson distribution with rate λ is

fλ(x) =
λxe−λ

x!
. (6)

(a) (4 points) With a prior λ ∼ Exp(ξ) for some fixed ξ > 0, what is the maximum a posteriori
(MAP) estimate for the rate λ?
Recall that the exponential distribution Exp(ξ) has probability density function

f (λ) = ξe−ξλ for λ ≥ 0.

Solution: The likelihood of x1, · · · , xn is

p(x1, · · · , xn|λ) = Πn
i=1 fλ(xi) =

1
x1!x2! · · · xn!

exp{(log λ)
n∑

i=1

xi − nλ}.

The prior distribution of λ is
p(λ) = ξe−ξλ.

The posterior distribution then has log probability

log p(λ|x1, · · · , xn) = C + (log λ)
n∑

i=1

xi − nλ − ξλ.

The MAP estimator λ̂MAP that maximizes the posterior probability satisfy the zero gradi-
ent condition

d
dλ

log p(λ|x1, · · · , xn) |λ̂=λ̂MAP
=

1
λ̂MAP

n∑
i=1

xi − n − ξ = 0. =⇒ λ̂MAP =
1

n + ξ

n∑
i=1

xi.

(b) (2 points) In Discussion 1, we have derived that the maximum likelihood estimation of λ
is the sample mean

λ̂MLE =
1
n

n∑
i=1

xi. (7)

How does the above MAP estimator compare to the MLE estimator in their bias and
variance characteristics?

A. The above MAP estimator has higher bias and lower variance.
B. The above MAP estimator has lower bias and lower variance.
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C. The above MAP estimator has higher bias and higher variance.
D. The above MAP estimator has lower bias and higher variance.

Solution: A. The two estimators are related by λ̂MAP =
n

n+ξ λ̂MLE and n
n+ξ < 1, so λ̂MAP has

lower variance. Since E[λ̂MLE] = 1
n

∑n
i=1 E[xi] = 1

n

∑n
i=1 λ = λ, the MLE estimator λ̂MLE is

unbiased. In contrast, the MAP estimator has expected value E[λ̂MAP] = n
n+ξλ , λ, and is

therefore biased.
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4 Watermelons
1. (6 points) Finn lives on a watermelon farm and wants to classify whether a watermelon is

sweet (labelled as y = 1) or not sweet (labelled as y = 0). Finn observes a d-dimensional
feature vector x ∈ Rd associated with the appearance and the smell of each watermelon. Before
observing a watermelon, Finn’s general prior is that a watermelon is sweet with probability
p(y = 1) = π1 and not sweet with probability p(y = 0) = 1 − π1.

Finn is a watermelon expert and knows that the conditional probability distribution of the
watermelon features p(x|y = k) for class k (where k = 0, 1) is a d-dimensional Gaussian dis-
tribution N(µk,Σ) with mean µk ∈ R

d and covariance Σ ∈ Rd×d. Note that the same covariance
matrix Σ is shared between the two classes.

f (x|y = k) =
1√

(2π)d|Σ|
exp{−

1
2

(x − µk)TΣ−1(x − µk)} (8)

Can you help Finn find out how likely a given watermelon is sweet? Write down a simplified
expression of p(y = 1|x) as a function of x, µ0, µ1,Σ, and π1. The expression should be in the
form of s(wT x + b) where s(z) = 1

1+e−z is the sigmoid function is the sigmoid function. Write
down what w and b should be.

Solution: By Bayes’ Rule,

p(y = 1|x) =
p(x|y = 1)p(y = 1)

p(x)
=

p(x|y = 1)p(y = 1)
p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

.

Therefore,

p(y = 1|x) =
π1 f1(x)

π1 f1(x) + π0 f0(x)
=

1

1 + π0 f0(x)
π1 f1(x)

.

When substituting in the Gaussian probability density function for f (x) and writing π1 as elog π1 ,

πk fk(x) =
1√

(2π)d|Σ|
exp{−

1
2

(x − µk)TΣ−1(x − µk) + log πk} =
1√

(2π)d|Σ|
exp

(
qk(x)

)
,

where qk(x) = −1
2 (x − µk)TΣ−1(x − µk) + log πk.

Therefore, the ratio can be written as

π0 f0(x)
π1 f1(x)

= eq0(x)−q1(x),

and hence
p(y = 1|x) =

1
1 + eq0(x)−q1(x) = s(q1(x) − q0(x)).

Now let’s look at the expression q1(x) − q0(x)

q1(x) − q0(x) = log
π1

1 − π1
−

1
2

(x − µ1)⊤Σ−1(x − µ1) +
1
2

(x − µ0)⊤Σ−1(x − µ0)
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= log
π1

1 − π1
+ x⊤Σ−1(µ1 − µ0) −

1
2
µ⊤1Σ

−1µ1 +
1
2
µ⊤0Σ

−1µ0

Notice that we can write it out as:

q1(x) − q0(x) = log
π1

1 − π1
+

1
2
µ⊤0Σ

−1µ0 −
1
2
µ⊤1Σ

−1µ1 + (µ1 − µ0)⊤Σ−1x = w0 + w⊤x

In other words,
p(y = 1 | x) = s(w0 + wT x),

where
w0 = log

π1

1 − π1
+

1
2
µ⊤0Σ

−1µ0 −
1
2
µ⊤1Σ

−1µ1,

and
wT = (µ1 − µ0)⊤Σ−1.
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5 Road Bikes and Mountain Bikes
1. (8 points) In statistics, a mixture model is a probabilistic model for representing the presence

of subpopulations within an overall population. For example, we might observe the prices of
n different bikes without knowing the type of each bike (e.g., road bike or mountain bike).
We could model the bike prices as a mixture model with two different components, where one
component corresponds to road bikes and the other corresponds to mountain bikes.

Let us assume that the price distribution is Gaussian for each type of bikes. In this case, the
overall price distribution of all bikes is a mixture model of two univariate Gaussian distribu-
tions, where the likelihood is given by

p(x | π0, π1, µ0, σ
2
0, µ1, σ

2
1) = p(k = 0) f (x | µ0, σ

2
0) + p(k = 1) f (x | µ1, σ

2
1), (9)

where p(k = 0) = π0 is the probability that a given bike is a road bike, p(k = 1) = π1 = 1−π0 is
the probability that a given bike is a mountain bike, and f (x | µk, σ

2
k) is the Gaussian probability

density function with mean µk and variance σ2
k .

We observed n i.i.d. samples of bike prices x1, · · · , xn from this mixture of Gaussian distribu-
tions.

(a) (2 points) What is the log probability of the bike prices {xi}
n
i=1? Write down an expression

for log p(x1, · · · , xn | π0, π1, µ0, σ
2
0, µ1, σ

2
1).

Solution:

log p(x1, · · · , xn | π0, π1, µ0, σ
2
0, µ1, σ

2
1)

=

n∑
i=1

log p(xi | π0, π1, µ0, σ
2
0, µ1, σ

2
1)

=

n∑
i=1

log{π0N(xi | µ0, σ
2
0) + π1N(xi | µ1, σ

2
1)}

=

n∑
i=1

log{
π0

σ0
√

2π
e
−

(xi−µ0)2

2σ2
0 +

π1

σ0
√

2π
e
−

(xi−µ0)2

2σ2
0 }

Midterm,©UCB CS 189/289A, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 12



(b) (2 points) Unfortunately, there is no closed-form expression for the maximum likelihood
estimator for the likelihood function above. In one approach to estimate the parameters
for a Gaussian mixture model, we introduce unobserved random variables ci associated
with the component of each xi. The unobserved binary variable ci ∈ {0, 1} indicates which
of the two Gaussian distributions xi is from (e.g., bike type).

P(ci = 0) = π0 and P(ci = 1) = π1. (10)

Conditioned on the component ci (e.g., bike type), the observations xi | ci (e.g., bike
prices) follows a Gaussian distribution N(xi | µk, σ

2
k). For k = 0, 1,

p(xi | ci = k) =
1

σk
√

2π
exp{−

(x − µk)2

2σ2
k

}. (11)

Suppose that we already know the unobserved variables c1, · · · , cn in addition to x1, · · · , xn.
The joint density of the samples and the unobserved components {(xi, ci)}ni=1 is known as
the complete likelihood.
Find an expression for log p((x1, c1), · · · , (xn, cn) | π0, π1, µ0, σ

2
0, µ1, σ

2
1). In your answer,

you may use notations such as µci .

Solution:

log p((x1, c1), · · · , (xn, cn) | π0, π1, µ0, σ
2
0, µ1, σ

2
1)

=

n∑
i=1

log{πci

1

σci

√
2π

e
−

(xi−µci )2

2σ2
ci }

=

n∑
i=1

log πci −
1
2

log 2πσ2
ci
−

(xi − µci)
2

2σ2
ci

Midterm,©UCB CS 189/289A, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 13



(c) (4 points) Still under the assumption that the unobserved component variables c1, · · · , cn

are known, what is the maximum likelihood estimation (MLE) of µ0, σ
2
0, µ1, and σ2

1? In
your answer, write down expressions for µ̂k and σ̂2

k in a way that holds for both k = 0, 1.
Let S k := {i : ci = k for i = 1, · · · , n} denote the set of all i’s such that ci = k. For example,
S 0 is the set of indices for all examples from the 0-th component.

Solution:
First, let us consider the MLE estimator µ̂k for k = 0, 1.

∂

∂µk
log p((x1, c1), · · · , (xn, cn) | π0, π1, µ0, σ

2
0, µ1, σ

2
1) =

n∑
i=1

−
∂

∂µk

(xi − µci)
2

2σ2
ci

=
∑
i∈S k

xi − µk

σ2
ci

.

By solving for zero gradient, the MLE estimator µ̂k is the mean among all examples from
the 0-th component:

µ̂k =
1
|S k|

∑
i∈S k

xi.

For the MLE estimator of σ2
k , the partial derivative w.r.t. σ2

k is

∂

∂σ2
k

log p((x1, c1), · · · , (xn, cn) | π0, π1, µ0, σ
2
0, µ1, σ

2
1) =

n∑
i=1

−
∂

∂σ2
k

(
1
2

logσ2
ci

) −
∂

∂σ2
0

(xi − µci)
2

2σ2
ci

=
∑
i∈S k

−
1

2σ2
k

+
(xi − µk)2

2σ4
k

.

By solving for zero gradient, the MLE estimator σ̂2
k is

σ̂2
k =

1
|S k|

∑
i∈S k

(xi − µ̂k)2.

This is the maximization (M) step of the expectation-maximization (EM) algorithm for
estimating the parameters of a Gaussian mixture model.
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6 Level Sets
1. (7 points) Esme generated a 2D multivariate Gaussian distribution but lost the parameters used

for generating the multivariate Gaussian distribution. The only piece of paper left has a plot of
the level set of the probability density function f at value

f (x1, x2) =
1
e

(max Gaussian density).

Here, “max Gaussian density” refers to the maximum value of the Gaussian probability density
function. A picture of the level set is shown below. For a function f : R2 → R and a constant
c ∈ R, the level set is defined as {x ∈ R2 : f (x) = c}.

The level set on Esme’s paper is an ellipse centered at (2, 1) with axes along the unit vectors
(1,−1) and (1, 1). The two axes correspondingly have radii r1 = 2

√
2 and r2 =

√
2 in the

ellipse.

(a) (1 point) What is the mean of the multivariate Gaussian distribution?

Solution: The level set is centered at the mean of the multivariate Gaussian distribution.
Therefore, µ = (2, 1).

(b) (1 point) Suppose we have a 2D Gaussian distribution with zero mean and diagonal co-
variance matrix

Σ =

σ2
1 0

0 σ2
2

 .
What is the maximum density in this distribution?
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Solution: The density is given by

f (x) =
1

2πσ1σ2
exp{−

x2
1

2σ2
1

−
x2

2

2σ2
2

}

The maximum density occurs at zero, so the maximum density is

max
x

f (x) = f (0) =
1

2πσ1σ2
.

(c) (2 points) Consider a rotated version of the ellipse that is aligned with the two axes and
centered at zero (as illustrated below). As before, the radii of the ellipse are 2

√
2 and

√
2.

What is the multivariate Gaussian distribution that has the rotated ellipse as its level set at
1/e of the maximum density?

Recall that the equation of an ellipse centered at zero and aligned with the x1- and x2- axis
radii a and b is

x2
1

a2 +
x2

2

b2 = 1. (12)

Solution: If we center the ellipse and rotate the ellipse 45 degrees counter-clockwise to
align with the x-axis, we would have an ellipse with equation

x2
1

8
+

x2
2

2
= 1. (13)

The axis-aligned ellipse corresponds to the level set of a diagonal Gaussian distribution
with zero mean and diagonal covariance matrix

Σ =

σ2
1 0

0 σ2
2

 .
Since the level set occurs at f (x1, x2) = 1

e ·
1

2πσ1σ2
, it corresponds to all points that satisfy

the equation

f (x) =
1

2πσ1σ2
exp{−

x2
1

2σ2
1

−
x2

2

2σ2
2

} =
1
e
·

1
2πσ1σ2
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=⇒ exp{−
x2

1

2σ2
1

−
x2

2

2σ2
2

} =
1
e

=⇒
x2

1

2σ2
1

+
x2

2

2σ2
2

= 1.

Therefore, by matching this to the axis-aligned ellipse equation, we arrive at

σ1 = 2 and σ2 = 1.
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(d) (3 points) What is the covariance matrix of the multivariate Gaussian distribution for the
level set described in the beginning of the question? It is sufficient to write the covariance
matrix in the form of Σ = QDQT .
Hint: The determinant of the covariance matrix Σ is the product of its eigenvalues. Think
also about the spectral decomposition of Σ.

Solution: The spectral decomposition factorizes Σ into Σ = QDQT , where D is diagonal
and Q is an orthogonal matrix. The columns of Q are eigenvectors of Σ.
Geometrically, we know that the eigenvectors of Σ are along the directions of the two axes
of symmetry in the ellipse, namely (1, 1) and (1,−1). Since the eigenvectors are up to the
sign, equivalently the eigenvectors can also be chosen to be (−1,−1) and (−1, 1).
Therefore, Q is the rotation matrix (up to multiplying each column by −1)

Q =
1
√

2

 1 1
−1 1

 .
Intuitively, this rotation matrix corresponds to the 45-degree clockwise rotation. It rotates
the axis-aligned eclipse back to the original tilted ellipse.
The diagonal matrix D corresponds to the eigenvalues of Σ, which in this case are the
variance along the directions of the two axes of symmetry in the ellipse:

D =
σ2

1 0
0 σ2

2

 = 4 0
0 1

 .
Putting it together, the covariance matrix is Σ = QDQT .

Midterm,©UCB CS 189/289A, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 18



7 Activation Functions
1. (6 points) While Rectified Linear Unit (ReLU) is often the default activation function used

across the deep learning community, other activation functions have also been proposed to
replace ReLU. Consider the following activation function (known as Swish or SiLU):

f (x) = x · σ(βx), (14)

where σ(z) = 1
1+e−z is the sigmoid function and β is a fixed hyperparameter.

Like ReLU, this activation function is unbounded above and bounded below. Unlike ReLU,
this activation function is smooth and non-monotonic.

(a) (1 point) What is the derivative f ′(x) of this new activation function (for a fixed β)?

Solution:
f ′(x) = σ(βx) + βxσ(βx)(1 − σ(βx)).

(b) (2 points) What does this activation function look like for β = 1 and for β → ∞? Draw
qualitative pictures for both values of β.

Solution: When β → ∞, f (x) = x · σ(βx) becomes the ReLU function. This is because
for x > 0, we have βx → ∞ and σ(βx) → 1, so f (x) → x. In the meantime, for x < 0,
βx → −∞ and σ(βx) → 0, so f (x) → 0. Therefore, as β → ∞, f (x) converges to the
ReLU function.
Below is the picture for β = 1.
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Consider a binary classification data set of 20000 examples. Among the 20000 examples,
5000 of them have the positive class label, and the remaining 15000 have negative class
labels. Suppose we have a fully-connected neural network with one hidden layer and
with sigmoid activation after the output layer. When training this neural network for one
epoch using stochastic gradient descent (SGD), we forget to shuffle the examples and loop
through all the negative examples first before the positive examples.

(c) (1 point) After the model is trained on the 15000 examples with negative class labels,
which of the following is likely true?

A. The model output before the sigmoid activation would always be close to zero.
B. The model output before the sigmoid activation would always be very negative.
C. The model output before the sigmoid activation would always be very positive.
D. The model output before the sigmoid activation would sometimes be positive

and sometimes be negative.

Solution: B.

(d) (1 point) Suppose we use ReLU as the activation function in the hidden layer. In the
above scenario, after training on only negatively-labelled examples, the activation input
to the ReLU function might end up being always negative. What would then happen when
the model is trained on the positive-labelled examples afterwards? Describe qualitatively
in 1-2 sentences.

Solution: When the activation input to ReLU is negative, the ReLU function is flat and
no gradients would go through the ReLU function. As all gradients would be zero, the
model would be stuck even after seeing positive examples.

(e) (1 point) Answer the above question with f (x) = x ·σ(βx) as the activation function with
β = 1.

Solution: With the new activation function, there would be non-zero gradients and the
model weights will update after seeing positive examples.
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8 Projected Gradient Descent for Lasso Regression (CS 289A Only)

1. (6 points) Sometimes, we may wish to add constraints to an optimization problem. For exam-
ple, we might want certain variables to be non-negative. Or, we might need to satisfy budget
constraints and resource constraints.

In this problem, we will consider Lasso regression. Let X ∈ Rn×d be the features and y ∈ Rn be
the labels of a regression problem. Given a regularization coefficient λ, the objective of Lasso
regression is to solve

min
w∈Rd

1
n

∥∥∥y − Xw
∥∥∥2

2
+ λ∥w∥1. (15)

Unlike Ridge regression, the loss function for Lasso regression is not differentiable. One way
to tackle the optimization problem for Lasso is to rewrite the above objective into the following
smooth, constrained optimization problem (by separating w into w = w+ − w− for two non-
negative vectors w+ and w− representing the positive and negative parts of w):

min
w+,w−∈Rd

1
n

∥∥∥y − X(w+ − w−)
∥∥∥2

2
+ λ1T

d w+ + λ1T
d w− (16)

subject to: w+i ,w
−
i ≥ 0 for i = 1, · · · , d.

1d denotes the all-one d-dimensional vector and therefore 1T
d w+ =

∑d
i=1 w+i .

In general, a constrained minimization problem for a given constraint set C ⊂ Rd asks for
the best solution minw∈C f (w) inside the set C. In the above constrained formulation of Lasso
regression, if we concatenate w+i and w−i together as a new variable u = [w+i w−i ] ∈ R2d, the
constraint set is the positive orthant in R2d

C = {u ∈ R2d : ui ≥ 0 for i = 1, · · · , 2d}. (17)

We have seen that gradient descent is a standard way to solve unconstrained optimization
problem. Here, we will see that we can modify gradient descent into projected gradient descent
to solve constrained optimization problems.

(a) (2 points) Ignoring the constraint for a moment, what is one step of the gradient descent
update for w+ and w− in the following unconstrained regression problem?

min
w+,w−∈Rd

1
n

∥∥∥y − Xw+ + Xw−
∥∥∥2

2
+ λ1T

d w+ + λ1T
d w− (18)

Assume that the step size is η.
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Solution:
w+k+1 = w+k − η

(
2
n

[XT X(w+k − w−k ) − XT y] + λ1d

)
w−k+1 = w−k − η

(
2
n

[XT y − XT X(w+k − w−k )] + λ1d

)

(b) (2 points) Now back to the constrained optimization problem. When C is a convex set,
the projection operator PC : R2d → R2d onto a convex set C is defined for a ∈ R2d as

PC(a) := arg min
b∈C

∥a − b∥22. (19)

The projection onto a convex set is uniquely defined. Give an expression (without proof)
for the projection PC onto the positive orthant

C = {a ∈ R2d : ai ≥ 0 for i = 1, · · · , 2d}. (20)

Solution:
PC(a) = max(0, a),

where the max is elementwise for the vector.
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(c) (2 points) Projected gradient descent introduces an additional projection in every gradient
descent update, which aims to minimize loss while guaranteeing that the weight stays
within the constraint set C. For the constraint set C ⊂ R2d, starting from a initial point
u0 ∈ C, with stepsize η > 0, projected gradient descent iterates the following equation
until a stopping condition is met:

uk+1 = PC(uk − η∇ f (uk)). (21)

For the reformulated Lasso optimization problem in Equation 16, Write down an expres-
sion for the projected gradient descent update for w+k+1, w−k+1 as a function of w+k and w−k ,
X, Y , λ, and η.

Solution:

w+k+1 = max
0,w+k − η (2

n
[XT X(w+k − w−k ) − XT y] + λ1d

)
w−k+1 = max

w−k − η (2
n

[XT y − XT X(w+k − w−k )] + λ1d

)
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