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Introduction to
Machine Learning Midterm A

• Please do not open the exam before you are instructed to do so.

• The exam is closed book, closed notes except your cheat sheets.

• Please write your name at the top of each page of the Answer Sheet. (You may do this before the exam.)

• You have 80 minutes to complete the midterm exam (6:40–8:00 PM). (If you are in the DSP program and have an
allowance of 150% or 200% time, that comes to 120 minutes or 160 minutes, respectively.)

• When the exam ends (8:00 PM), stop writing. You have 15 minutes to scan the exam and turn it into Gradescope. You
must remain visible on camera while you scan your exam and turn it in (unless the scanning device is your only self-
monitoring device). Most of you will use your cellphone and a third-party scanning app. If you have a physical scanner
in your workspace that you can make visible from your camera, you may use that. Late exams will be penalized at a rate
of 10 points per minute after 8:15 PM. (The midterm has 100 points total.) Continuing to work on the exam after 8:00
PM (or not being visible prior to submission) may incur a score of zero.

• Mark your answers on the Answer Sheet. If you absolutely must use overflow space for a written question, use the space
for “Written Question #5” (but please try hard not to overflow). Do not attach any extra sheets.

• The total number of points is 100. There are 10 multiple choice questions worth 4 points each, and three written questions
worth 20 points each.

• For multiple answer questions, fill in the bubbles for ALL correct choices: there may be more than one correct choice,
but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct
answers must be checked.

• For written questions, please write your full answer in the space provided and clearly label all subparts of each
written question. Again, do not attach extra sheets.
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Q1. [40 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(a) [4 pts] Let X be an m × n matrix. Which of the following are always equal to rank(X)?

© A: rank(XT )

© B: rank(XT X)

© C: m− dimension(nullspace(X))

© D: dimension(rowspace(X))

(b) [4 pts] Which of the following types of square matrices can have negative eigenvalues?

© A: a symmetric matrix

© B: I − uuT where u is a unit vector

© C: an orthonormal matrix (M such that M>M = I)

© D: ∇2 f (x) where f (x) is a Gaussian PDF

(c) [4 pts] Choose the correct statement(s) about Support Vector Machines (SVMs).

© A: if a finite set of training points from two classes is linearly separable, a hard-margin SVM will always find
a decision boundary correctly classifying every training point

© B: if a finite set of training points from two classes is linearly separable, a soft-margin SVM will always find a
decision boundary correctly classifying every training point

© C: every trained two-class hard-margin SVM model has at least one point of each class at a distance of exactly
1/‖w‖ (the margin width) from the decision boundary

© D: every trained two-class soft-margin SVM model has at least one point of each class at a distance of exactly
1/‖w‖ (the margin width) from the decision boundary

(d) [4 pts] Suppose we perform least-squares linear regression, but we don’t assume that all weight vectors are equally
reasonable; instead, we use the maximum a posteriori method to impose a normally-distributed prior probability on the
weights. Then we are doing

© A: L2 regularization

© B: Lasso regression

© C: logistic regression

© D: ridge regression

(e) [4 pts] Which of the following statements regarding ROC curves are true?

© A: the ROC curve is monotonically increasing

© B: for a logistic regression classifier, the ROC
curve’s horizontal axis is the posterior probability
used as a threshold for the decision rule

© C: the ROC curve is concave

© D: if the ROC curve passes through (0, 1), the clas-
sifier is always correct (on the test data used to make
the ROC curve)

(f) [4 pts] One way to understand regularization is to ask which vectors minimize the regularization term. Consider the set
of unit vectors in the plane: {x ∈ R2 : ‖x‖22 = 1}. Which of the following regularization terms are minimized solely by the
four unit vectors {(0, 1), (1, 0), (−1, 0), (0,−1)} and no other unit vector?

© A: f (x) = ‖x‖0 = the # of nonzero entries of x

© B: f (x) = ‖x‖1

© C: f (x) = ‖x‖22

© D: f (x) = ‖x‖∞ = max{|x1|, |x2|}
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(g) [4 pts] Suppose we train a soft-margin SVM classifier on data with d-dimensional features and binary labels. Below we
have written four pairs of the form “modification→ effect.” For which ones would a model trained on the modified data
always have the corresponding effect relative to the original model?

© A: augment the data with polynomial features → optimal value of the objective function (on the training
points) decreases or stays the same

© B: multiply each data point by a fixed invertible d × d matrix A; i.e., Xi ← AXi → all training points are
classified the same as before

© C: multiply each data point by a fixed orthonormal d×d matrix U and add a fixed vector z ∈ Rd; i.e., Xi ← UXi+z
→ all training points are classified the same as before.

© D: normalize each feature so that its mean is 0 and variance is 1 → all training points are classified the same
as before

(h) [4 pts] A real-valued n×n matrix P is called a projection matrix if P2 = P. Select all the true statements about eigenvalues
of P.

© A: P can have an eigenvalue of 0

© B: P can have an eigenvalue of 1

© C: P can have an eigenvalue of −1

© D: P can have an eigenvalue that isn’t 0, 1, or −1

(i) [4 pts] Let X be a real-valued n × d matrix. Let Ω be a diagonal, real-valued n × n matrix whose diagonal entries are all
positive. Which of the following are true of the matrix product M = XT ΩX?

© A: M could have negative eigenvalues

© B: M could have eigenvalues equal to zero

© C: M could have positive eigenvalues

© D: the eigenvalues of M are the values on the
diagonal of Ω

(j) [4 pts] Which of the following regression methods always have just one unique optimum, regardless of the data?

© A: least Squares Regression

© B: ridge Regression

© C: Lasso Regression

© D: logistic Regression
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Q2. [20 pts] Gradient Descent
Let’s use gradient descent to solve the optimization problem of finding the value of x ∈ R2 that minimizes the objective function

J(x) =
1
2

xT Ax, A =

[
1 0
0 2

]
.

(a) [7 pts] Let x(t) represent the value of x after t iterations of gradient descent from some arbitrary starting point x(0). Write
the standard gradient descent update equation in the form x(t+1) ← f (x(t)) (you tell us what the function f is) with a step
size of ε = 1

4 . Then manipulate it into the form x(t+1) = Bx(t) where B is a matrix (you tell us what B is). Show your work.

(b) [4 pts] The minimum of J(x) is at x∗ = 0, so we hope that our algorithm will converge: that is, limt→∞ x(t) = 0. Show that
for any starting point x(0), your gradient descent algorithm converges to x∗.

(c) [3 pts] Suppose we change the step size to ε = 1. What is B? How does gradient descent behave with this step size?

(d) [3 pts] Suppose we replace A with another diagonal matrix with positive diagonal entries. What is the optimal step size
for fastest convergence, expressed in terms of the diagonal entries A11 and A22?

(e) [3 pts] Your argument in part (b) can be adapted to prove convergence for any diagonal A with positive diagonal entries,
so long as we choose a suitably small step size ε as derived in part (d). Suppose we replace A with another matrix that
is symmetric and positive definite but not diagonal. Suppose we choose a suitably small step size ε. Without writing
any equations, give a mathematical explanation (in English) why your argument in part (b) applies here and gives us
confidence that gradient descent will converge to the minimum, even though A is not diagonal. Hint: One approach is to
change the coordinate system.
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Q3. [20 pts] Gaussians and Linear Discriminant Analysis
Suppose that the training and test points for a class come from an anisotropic multivariate normal distribution N(µ,Σ), where
µ ∈ Rd and Σ ∈ Rd×d is symmetric and positive definite. Recall that (for x ∈ Rd) its probability density function (PDF) is

f (x) =
1

(
√

2π)d
√
|Σ|

exp
(
−

1
2

(x − µ)> Σ−1 (x − µ)
)
.

(a) [7 pts] In lecture, I claimed that if Σ is diagonal, you can write this PDF as a product of d univariate Gaussian PDFs, one
for each feature. What if Σ is not diagonal? Show that if you substitute Σ’s eigendecomposition for Σ, you can write the
PDF above as a product of d univariate Gaussian PDFs, one aligned with each eigenvector of Σ. For simplicity, please
set µ = 0 (prove it just for the mean-zero case).

Hints: Use the shorthand τ = 1/
(
(
√

2π)d √|Σ|
)
. Write the eigendecomposition as a summation with one term per

eigenvalue/vector. The determinant |Σ| is the product of Σ’s eigenvalues (all d of them).

(b) [2 pts] When you express the multivariate PDF as a product of univariate PDFs, what is the variance of the univariate
distribution along the direction of the ith eigenvector vi?

(c) [7 pts] Consider performing linear discriminant analysis (LDA) with two classes. Class C has the class-conditional
distribution N(µC,Σ), and class D has the class-conditional distribution N(µD,Σ). Note that they both have the same
covariance matrix but different means. Recall that we define a quadratic function

QC(x) = ln
(
(
√

2π)d fC(x) πC

)
,

where fC(x) is the PDF for class C and πC is the prior probability for class C. For class D, we define QD(x) likewise. For
simplicity, assume πC = πD = 1

2 .

Write down the LDA decision boundary as an equation in terms of QC(x) and QD(x). Then substitute the definition
above and show that the decision boundary has the form {x : w · x + α = 0} for some w ∈ Rd and α ∈ R. What is the
value of w?

(d) [2 pts] What is the relationship between w and the decision boundary?

(e) [2 pts] Is w always an eigenvector of Σ? (That is, is it always true that w = ωvi for some scalar ω and unit eigenvector vi

of Σ?) Why or why not?
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Q4. [20 pts] Double Regression
Let’s work out a two-way least-squares linear regression method. The input is n observations, recorded in two vectors s, t ∈ Rn.
The ith observation is the ordered pair (si, ti). We’re going to view these data in two ways: (1) si is a sample point in one
dimension with label ti; or (2) ti is a sample point in one dimension with label si. We will use least-squares linear regression to
(1) take a test point sT ∈ R and predict its label tT , with a hypothesis t̂(sT ) = βsT , and (2) take a test point tT ∈ R and predict its
label sT , with a hypothesis ŝ(tT ) = γtT .

We do not use bias terms, so both regression functions will pass through the origin. Our optimization problems are

Find β that minimizes
n∑

i=1

(βsi − ti)2 Find γ that minimizes
n∑

i=1

(γti − si)2

A natural question, which we will explore now, is whether both regressions find the same relationship between sT and tT .

(a) [7 pts] Derive a closed-form expression for the optimal regression coefficient β. Write your final answer in terms of
vector operations, not summations. Show all your work.

(b) [2 pts] What is a closed-form expression for the optimal regression coefficient γ? (This follows from symmetry; you
don’t need to repeat the derivation, unless you want to.)

(c) [4 pts] The hypotheses tT = βsT and sT = γtT represent the same equation if and only if βγ = 1. Prove that βγ ≤ 1 and
determine under what condition equality holds. Hint: remember the Cauchy–Schwarz inequality.

(d) [5 pts] We might want to compute these coefficients with `1-regularization. For some regularization parameter λ > 0,
consider the optimization problem

Find β that minimizes λ|β| +
n∑

i=1

(βsi − ti)2

In Homework 4, we analyzed this optimization problem and concluded that that there is at most one point where the
derivative is zero. If such a point exists, it is the minimum; otherwise, the minimum is at the discontinuity β = 0. For
simplicity, let’s consider only the case where the solution happens to be positive (β > 0).

Derive a closed-form expression for the optimal regression coefficient β in the case β > 0. Write your final answer in
terms of vector operations, not summations. Show all your work.

(e) [2 pts] What necessary and sufficient condition (inequality) should s, t, and λ satisfy to assure us that the optimal β
is indeed positive?
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