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1 Duality
As we have seen in our discussion of kernels, ridge regression can be viewed in two ways: (1) an
optimization problem over the weights w ∈ Rd which scales according to the dimensionality of the
augmented feature space, and (2) an optimization problem over the weights α ∈ Rn which scales
according to the the number of training points. These two viewpoints give rise to two equivalent
solutions:

w∗ = (X>X + λI)−1X>y and w∗ = X>(XX>+ λI)−1y

The second (kernelized) expression is much more efficient to calculate when the number of training
points n is significantly smaller than the number of augmented features d. Recall that the derivation
for the kernelized expression relied on invoking the fundamental theorem of linear algebra and
solving for a set of dual variables. While this approach is certainly valid, it may not be applicable
for kernelizing all problems. Rather, a more principled approach is to apply Lagrangian duality
and solve the dual problem. In this section we will introduce duality for arbitrary optimization
problems, and then use duality to derive the kernelized versions for ridge regression and SVMs.

1.1 Primal and Dual Problem
All optimization problems can be expressed in the standard form

min
x

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m

hj(x) = 0 j = 1, . . . , n

(1)

For the purposes of our discussion, assume that x ∈ Rd. The components of an optimization
problem are:

• The objective function f0(x)

• The inequality constraints: expressions involving fi(x)

• The equality constraints: expressions involving hj(x)

Working with the constraints can be cumbersome and challenging to manipulate, and it would be
ideal if we could somehow turn this constrained optimization problem into an unconstrained one.
One idea is to re-express the optimization problem into

min
x
L(x)
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where

L(x) =

{
f0(x) if fi(x) ≤ 0, ∀i ∈ {1 . . m} and hj(x) = 0, ∀j ∈ {1 . . n}
∞ otherwise

(2)

Note that the unconstrained optimization problem above is equivalent to the original constrained
problem. Even though the unconstrained problem considers values that violate the constraints (and
therefore are not in the feasible set for the constrained optimization problem), it will effectively
ignore them because they are treated as∞ in a minimization problem.

Even though we are now dealing with an unconstrained problem, it still is difficult to solve the op-
timization problem, because we still have to deal with all of the casework in the objective function
L(x). In order to solve this issue, we have to introduce dual variables, specifically one set of dual
variables for the equality constraints, and one set for the inequality constraints. If we only take into
account the dual variables for the equality constraints, the optimization problem now becomes

min
x

max
ν
L(x,ν)

where

L(x,ν) =

{
f0(x) +

∑n
j=1 νjhj(x) if fi(x) ≤ 0, ∀i ∈ {1 . . m}

∞ otherwise
(3)

We are still working with an unconstrained optimization problem, except that now, we are optimiz-
ing over two sets of variables: the primal variables x ∈ Rd and the dual variables ν ∈ Rn. Also
note that the optimization problem has now become a nested one, with an inner optimization prob-
lem the maximizes over the dual variables, and an outer optimization problem that minimizes over
the primal variables. Let’s examine why this optimization problem is equivalent to the original
constrained optimization problem:

• Any x that violates the inequality constraints is still treated as∞ by the outer minimization
problem over x and therefore ignored

• For any x that violates the equality constraints (meaning that ∃j s.t. hj(x) 6= 0), the inner
maximization problem over ν can choose νj as∞ if hj(x) > 0 (or νj as−∞ if hj(x) < 0) to
cause the inner maximization to go to∞, therefore being ignored by the outer minimization
over x

• For any x that does not violate any of the equality or inequality constraints, the inner maxi-
mization problem over ν is simply equal to f0(x)

This solution comes at a cost — in an effort to remove the equality constraints, we had to add in
dual variables, one for each equality constraint. With this in mind, let’s try to do the same for the
inequality constraints. Adding in dual variable λi to represent each inequality constraint, we now
have

min
x

max
λ,ν

L(x,λ,ν) = f0(x) +
m∑
i=1

λifi(x) +
n∑
j=1

νjhj(x)

s.t. λi ≥ 0 i = 1, . . . ,m

(4)
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For convenience, we can place the constraints involving λ into the optimization variable.

min
x

max
λ≥0,ν

L(x,λ,ν) = f0(x) +
m∑
i=1

λifi(x) +
n∑
j=1

νjhj(x) (5)

This optimization problem above is otherwise known as the primal (not to be confused with the
primal variables), and its optimal value is indeed equivalent to that of the original constrained
optimization problem.

p∗ = min
x

max
λ≥0,ν

L(x,λ,ν) (6)

We can verify that this is indeed the case:

• For any x that violates the inequality constraints (meaning that ∃i ∈ {1 . . m} s.t. fi(x) > 0),
the inner maximization problem over λ can choose λi as∞ to cause the inner maximization
go to∞, therefore being ignored by the outer minimization over x

• For any x that violates the equality constraints (meaning that ∃j s.t. hj(x) 6= 0), the inner
maximization problem over ν can choose νj as∞ if hj(x) > 0 (or νj as −∞ if hj(x) < 0)
to cause the inner maximization go to∞, therefore being ignored by the outer minimization
over x

• For any x that does not violate any of the equality or inequality constraints, in the inner
maximization problem over ν, the expression

∑n
j=1 νjhj(x) evaluates to 0 no matter what

the value of ν is, and in the inner maximization problem over λ, the expression
∑m

i=1 λifi(x)
can at maximum be 0, because λi is constrained to be non-negative, and fi(x) is non-positive.
Therefore, at best, the maximization problem sets λifi(x) = 0, and

max
λ≥0,ν

L(x,λ,ν) = f0(x)

In its full form, the objective L(x,λ,ν) is called the Lagrangian, and it takes into account the
unconstrained set of primal variables x ∈ Rd, the constrained set of dual variables λ ∈ Rn cor-
responding to the inequality constraints, and the unconstrained set of dual variables ν ∈ Rm

corresponding to the equality constraints. Note that our dual variables λi are in fact constrained, so
ultimately we were not able to turn the original optimization problem into an unconstrained one,
but our constraints are much simpler than before.

The dual of this optimization problem is still over the same optimization objective, except that now
we swap the order of the maximization of the dual variables and the minimization of the primal
variables.

d∗ = max
λ≥0,ν

min
x
L(x,λ,ν) = max

λ≥0,ν
g(λ,ν) (7)

The dual is effectively a maximization problem (over the dual variables):

d∗ = max
λ≥0,ν

g(λ,ν) (8)

where
g(λ,ν) = min

x
L(x,λ,ν) (9)
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The dual is very useful to work with, because now the inner optimization problem over x is an
unconstrained problem! Furthermore, the dual g(λ,ν) is always a concave function, regardless of
the primal objective function or its constraints. This is because the dual is a pointwise minimum of
concave functions, which itself is a concave function. Specifically g(λ,ν) = minx L(x,λ,ν) is
a pointwise minimum of functions L(x,λ,ν) that are affine in the dual variables (which are both
concave and convex at the same time).

1.2 Strong Duality and KKT Conditions
Let’s examine the relationship between the primal and dual problem. It is always true that the
solution to the primal problem is at least as large as the solution to the dual problem:

p∗ ≥ d∗ (10)

This condition is know as weak duality.

Proof. We know that

∀x,λ ≥ 0,ν max
λ̃≥0,ν̃

L(x, λ̃, ν̃) ≥ L(x,λ,ν) ≥ min
x̃
L(x̃,λ,ν)

More compactly,
∀x,λ ≥ 0,ν max

λ̃≥0,ν̃
L(x, λ̃, ν̃) ≥ min

x̃
L(x̃,λ,ν)

Since this is true for all x,λ ≥ 0,ν this is true in particular when we set

x = arg min
x̃

max
λ̃≥0,ν̃

L(x̃, λ̃, ν̃)

and
λ,ν = arg max

λ̃≥0,ν̃
min
x̃
L(x̃, λ̃, ν̃)

We therefore know that

p∗ = min
x̃

max
λ̃≥0,ν̃

L(x̃, λ̃, ν̃) ≥ max
λ̃≥0,ν̃

min
x̃
L(x̃, λ̃, ν̃) = d∗

The difference p∗ − d∗ is known as the duality gap. In the case of strong duality, the duality gap
is 0. That is, we can swap the order of the minimization and maximization and up with the same
optimal value:

p∗ = d∗ (11)

There are several useful theorems detailing the existence of strong duality, such as Slater’s theo-
rem, which states that if the primal problem is convex, and there exists an x that can strictly meet
the inequality constraints and meet the equality constraints, then strong duality holds. Given that
strong duality holds, the Karush-Kuhn-Tucker (KKT) conditions can help us find the solution
to the dual variables of the optimization problem. The KKT conditions are composed of:
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1. Primal feasibility (inequalities)

fi(x) ≤ 0, ∀i ∈ {1 . . m}

2. Primal feasibility (equalities)

hj(x) = 0, ∀j ∈ {1 . . n}

3. Dual feasibility
λi ≥ 0, ∀i ∈ {1 . . m}

4. Complementary Slackness
λifi(x) = 0, ∀i ∈ {1 . . m}

5. Stationarity

∇xf0(x) +
m∑
i=1

λi∇xfi(x) +
n∑
j=1

νj∇xhj(x) = 0

Let’s see how the KKT conditions relate to strong duality.

Theorem 1. If x∗ and λ∗,ν∗ are the primal and dual solutions respectively, with zero duality gap
(i.e. strong duality holds), then x∗,λ∗,ν∗ also satisfy the KKT conditions.

Proof. KKT conditions 1, 2, 3 are trivially true, because the primal solution x∗ must satisfy the
primal constraints, and the dual solution λ∗,ν∗ must satisfy the dual constraints. Now, let’s prove
conditions 4 and 5. We know that since strong duality holds, we can say that

p∗ = f0(x
∗) = g(λ∗,ν∗) = d∗ (12)

= min
x
L(x,λ∗,ν∗) (13)

≤ L(x∗,λ∗,ν∗) (14)

= f0(x
∗) +

m∑
i=1

λ∗i fi(x
∗) +

���
����n∑

j=1

ν∗j hj(x
∗) (15)

= f0(x
∗) +

m∑
i=1

λ∗i fi(x
∗) (16)

≤ f0(x
∗) (17)

We cancel the terms involving hj(x
∗) because we know that the primal solution must satisfy

hj(x
∗) = 0. Furthermore, we know that λ∗i fi(x

∗) ≤ 0, because λ∗i ≥ 0 in order to satisfy the
dual constraints, and fi(x∗) ≤ 0 in order to satisfy the primal constraints. Since we established
that f0(x∗) = minx L(x,λ∗,ν∗) ≤ L(x∗,λ∗,ν∗) ≤ f0(x

∗), we know that all of the inequalities
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hold with equality and therefore L(x∗,λ∗,ν∗) = minx L(x,λ∗,ν∗). This implies KKT condition
5 (stationarity), that

∇xf0(x
∗) +

m∑
i=1

λ∗i∇xfi(x
∗) +

n∑
j=1

ν∗j∇∗xhj(x∗) = 0

Finally, note that due to the equality f0(x∗)+
∑m

i=1 λ
∗
i fi(x

∗) = f0(x
∗), we know that

∑m
i=1 λ

∗
i fi(x

∗) =
0. This combined with the fact that ∀i λ∗i fi(x

∗) ≤ 0, establishes KKT condition 4 (complemen-
tary slackness):

λ∗i fi(x
∗) = 0, ∀i ∈ {1 . . m}

The theorem above establishes that in the presence of strong duality, if the solutions are optimal,
then they satisfy the KKT conditions. Let’s prove a statement that is almost (but not quite) the
converse, which will be much more helpful for solving optimization problems.

Theorem 2. If x̄ and λ̄, ν̄ satisfy the KKT conditions, and the primal problem is convex, then they
are the optimal solutions to the primal and dual problems with zero duality gap.

Proof. If x̄ and λ̄, ν̄ satisfy KKT conditions 1, 2, 3 we know that they are at least feasible for the
primal and dual problem. From the KKT stationarity condition we know that

∇xf0(x̄) +
m∑
i=1

λ̄i∇xfi(x̄) +
n∑
j=1

ν̄j∇xhj(x̄) = 0

Since the primal problem is convex, we know that L(x,λ,ν) is convex in x, and if the gradient of
L(x, λ̄, ν̄) at x̄ is 0, we know that

x̄ = arg min
x

L(x, λ̄, ν̄)

Therefore, we know that the optimal primal values for the primal problem optimize the inner
optimization problem of the dual problem, and

g(λ̄, ν̄) = f0(x̄) +
m∑
i=1

λ̄ifi(x̄) +
n∑
j=1

ν̄jhj(x̄)

By the primal feasibility conditions for hj(x) and the complementary slackness condition, we
know that

g(λ̄, ν̄) = f0(x̄)

Now, all we have to do is to prove that x̄ and λ̄, ν̄ are primal and dual optimal, respectively. Note
that since weak duality always holds, we know that

p∗ ≥ d∗ = max
λ≥0,ν

g(λ,ν) ≥ g(λ̃, ν̃), ∀λ̃ ≥ 0, ν̃
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Since we know that p∗ ≥ g(λ,ν), we can also say that

f0(x)− p∗ ≤ f0(x)− g(λ,ν)

And if we have that f0(x̄) = g(λ̄, ν̄) as we deduced earlier, then

f0(x̄)− p∗ ≤ f0(x̄)− g(λ̄, ν̄) = 0 =⇒ p∗ ≥ f0(x̄)

Since p∗ is the minimum value for the primal problem, we can go further by saying that p∗ ≥ f0(x̄)
holds with equality and

p∗ = f0(x̄) = g(λ̄, ν̄) ≤ d∗

since it always holds that p∗ ≥ d∗ we conclude that

p∗ = f0(x̄) = g(λ̄, ν̄) = d∗

Therefore, we have proven that x̄ and λ̄, ν̄ are primal and dual optimal respectively, with zero
duality gap. We eventually arrived at the conclusion that strong duality does indeed hold.

Let’s pause for a second to understand what we’ve found so far. Given an optimization problem,
its primal problem is an optimization problem over the primal variables, and its dual problem is an
optimization problem over the dual variables. If strong duality holds, then we can solve the dual
problem and arrive at the same optimal value. In order to solve the dual, we have to first solve the
unconstrained inner optimization problem over the primal variables and then solve the constrained
outer optimization problem over the dual variables. But how do we even know in the first place
that strong duality holds? This is where KKT comes into play. If the the primal problem is convex
and the KKT conditions hold, we can solve for the dual variables easily and also verify strong
duality does indeed hold. We shall do just that, in our discussion of dual ridge regression and dual
SVMs.

1.3 Dual Ridge Regression
Let’s derive kernel ridge regression again, using duality this time. Recall the unconstrained ridge
regression formulation:

min
w
‖Xw − y‖2 + λ‖w‖2

This formulation is not conducive to dualization, because it lacks constraints. We will add con-
straints by introducing a dummy variable z = Xw − y that corresponds to equality constraints:

min
w,z

‖z‖2 + λ‖w‖2

s.t. z = Xw − y
(18)

Now we proceed to forming the dual problem. For the purposes of notation, note that we are using
α in place of ν, and there are no dual variables corresponding to λ because there are no inequality
constraints. The Lagrangian is

L(w, z,α) = ‖z‖2 + λ‖w‖2 + α>(Xw − y − z)
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The dual problem is
max
α

g(α) (19)

where
g(α) = min

w,z
‖z‖2 + λ‖w‖2 + α>(Xw − y − z) (20)

Since the g(α) is a convex minimization problem over the variables w and z, we can simply set
the derivative to 0 w.r.t. w and z:

• ∇wL = 2λw + X>α = 0 =⇒ w∗(α) = − 1
2λ
X>α. This tells us that w∗ is going to be a

linear combination of the xi’s.

• ∇zL = 2z−α = 0 =⇒ z∗(α) = 1
2
α.

Plugging these optimal values back into the optimization problem, we have that

g(α) = min
w,z
L(w, z,α) (21)

= L(w∗(α), z∗(α),α) (22)

=

∥∥∥∥−1

2
α

∥∥∥∥2 + λ

∥∥∥∥− 1

2λ
X>α

∥∥∥∥2 + α>

(
X

(
− 1

2λ
X>α

)
− y − 1

2
α

)
(23)

= −1

4
α>α− 1

4λ
α>XX>α−α>y (24)

Now, the dual problem is

max
α

g(α) = max
α
−1

4
α>α− 1

4λ
α>XX>α−α>y

Note that this problem is a maximization over a concave problem (similar to a minimization over
a convex problem) and we can take the derivative w.r.t α and set it to 0:

∇αg(α) = −1

2
α− 1

2λ
XX>α− y = 0 =⇒ α∗ = −2λ(XX>+ λI)−1y

The optimal w∗ is therefore given by

w∗ = − 1

2λ
X>α∗ = X>(XX>+ λI)−1y

Which exactly matches the expression we previously derived for kernel ridge regression! Note that
while this solution is dual optimal, it may not be optimal for the primal problem. In order to ensure
that it is primal optimal, we need to establish that strong duality holds. In this case the primal
problem is convex, so we simply need to ensure that the KKT conditions hold. Since we are not
dealing with any inequality conditions here, the only applicable conditions are primal feasibility
for the equalities and stationarity. Indeed the primal equality constraints are met, since

Xw∗ − y − z∗ = − 1

2λ
XX>α∗ − y − 1

2
α∗
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= − 1

2λ
(XX>+ λI)α∗ − y

= (XX>+ λI)(XX>+ λI)−1y − y

= 0

We already showed the stationarity conditions are met, when we were solving g(α) = minw,z L(w, z,α).
We conclude that w∗ is indeed the optimal solution to the primal problem.

1.4 Dual SVMs
Previously in our investigation of SVMs, we formulated a constrained optimization problem that
we can solve to find the optimal parameters for our hyperplane decision boundary. Recall the setup
of soft-margin SVMs:

• yi’s: ±1, representing positive or negative class

• xi’s: feature vectors in Rd

• ξi’s: slack variables representing how much an xi is allowed to violate the margin

• C: a hyperparameter describing how severely we penalize slack

• The optimization problem for w ∈ Rd and b ∈ R, the parameters of the SVM:

min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi(w
>xi − b) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i

(25)

Now, let’s investigate the dual of this problem. The primal problem in standard form is

min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. (1− ξi)− yi(w>xi − b) ≤ 0 ∀i
− ξi ≤ 0 ∀i

(26)

Let’s identify the primal and dual variables for the SVM problem. We will have

• Primal variables w, b, and ξi

• Dual variables αi corresponding to each constraint of the form yi(w
>xi − b) ≥ 1− ξi

• Dual variables βi corresponding to each constraint of the form ξi ≥ 0
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For the purposes of notation, note that we are using α and β in place of λ, and there are no dual
variables corresponding to ν because there are no equality constraints. The Lagrangian for the
SVM problem is

L(w, b, ξ,α,β) =
1

2
‖w‖2 + C

n∑
i=1

ξi +
n∑
i=1

αi((1− ξi)− yi(w>xi − b)) +
n∑
i=1

βi(−ξi) (27)

=
1

2
‖w‖2 −

n∑
i=1

αiyi(w
>xi − b) +

n∑
i=1

αi +
n∑
i=1

(C − αi − βi)ξi (28)

Thus, the dual is
max

α≥0,β≥0
g(α,β) (29)

where

g(α,β) = min
w,b,ξ

1

2
‖w‖2 −

n∑
i=1

αiyi(w
>xi − b) +

n∑
i=1

αi +
n∑
i=1

(C − αi − βi)ξi (30)

Let’s use the KKT conditions to find the optimal dual variables. Verify that the primal problem
is convex in the primal variables. We know that from the stationarity conditions, evaluated at the
optimal dual values α∗ and β∗, and the optimal primal values w∗, b∗, ξ∗i :

∂L
∂wi

=
∂L
∂b

=
∂L
∂ξi

= 0

• ∇wL = w∗ −
∑n

i=1 α
∗
i yixi = 0 =⇒ w∗ =

∑n
i=1 α

∗
i yixi. This tells us that w∗ is going to

be a weighted combination of the positive-class xi’s and negative-class xi’s.

• ∂L
∂b

=
∑n

i=1 α
∗
i yi = 0. This tells us that the weights α∗i will be equally distributed among

positive- and negative- class training points.

• ∂L
∂ξi

= C − α∗i − β∗i = 0 =⇒ 0 ≤ α∗i ≤ C. This tells us that the weights α∗i are restricted to
being less than the hyperparameter C.

Verify that the other KKT also hold, establishing strong duality. Using these observations, we can
eliminate some terms of the dual problem.

L(w, b, ξ,α∗,β∗) =
1

2
‖w‖2 −

n∑
i=1

α∗i yi(w
>xi − b) +

n∑
i=1

α∗i +
n∑
i=1

(C − α∗i − β∗i )ξi (31)

=
1

2
‖w‖2 −

n∑
i=1

α∗i yi(w
>xi) + b

n∑
i=1

α∗i yi︸ ︷︷ ︸
=0

+
n∑
i=1

α∗i +
n∑
i=1

(C − α∗i − β∗i )ξi︸ ︷︷ ︸
=0

(32)

=
1

2
‖w‖2 −

n∑
i=1

α∗i yi(w
>xi) +

n∑
i=1

α∗i (33)
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Since the primal problem is convex, from the KKT conditions we have that the optimal primal
variables w∗, b∗, ξ∗ minimize L(w, b, ξ,α∗,β∗):

g(α∗,β∗) = min
w,b,ξ
L(w, b, ξ,α∗,β∗) (34)

= L(w∗, b∗, ξ∗,α∗,β∗) (35)

=
1

2
‖

n∑
i=1

α∗i yixi‖2 −
n∑
i=1

α∗i yi((
n∑
j=1

α∗jyjxj)
>xi) +

n∑
i=1

α∗i (36)

=
1

2
‖

n∑
i=1

α∗i yixi‖2 −
n∑
i=1

(α∗i yixi
>(

n∑
j=1

α∗jyjxj)) +
n∑
i=1

α∗i (37)

= α∗>1− 1

2
α∗>Qα∗ (38)

where Qij = yi(xi
>xj)yj (and Q = (diag y)XX>(diag y)).

Now, we can write the final form of the dual, which is only in terms of α and X and y (Note that
we have eliminated all references to β):

max
α

α>1− 1

2
α>Qα

s.t.
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C i = 1, . . . , n

(39)

Remember to account for the constraints
∑n

i=1 αiyi = 0 and 0 ≤ αi ≤ C that arise from the
stationarity conditions. After all of this effort, we have managed to turn a minimization problem
over the primal variables into a maximization problem over the dual variables. One might ask,
why go through the effort to formulate and solve the dual problem instead? For one, the dual is an
optimization problem over the number of training points n rather than the number of augmented
features d, making it particularity attractive when n � d. Second, it incorporates the term XX>

which is simply the Gram matrix K of kernel evaluations among all pairs of training points. We
can apply the kernel trick to form this Gram matrix, effectively relying on the the dimensionality
of the raw feature space rather than the augmented feature space. These are more or less the exact
same justifications for kernel ridge regression.

1.4.1 Geometric intuition

We’ve formulated the dual SVM problem and used the KKT conditions to formulate an equivalent
optimization problem, but what do these dual values αi even mean? That’s a good question!

We know that given optimal primal and dual values, the following KKT conditions are enforced:

• Stationarity
C − α∗i − β∗i = 0
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• Complementary slackness

α∗i · ((1− ξ∗i )− yi(w∗>xi − b∗)) = 0

β∗i · ξ∗i = 0

Here are some noteworthy relationships between αi and the properties of the SVMs:

• Case 1: α∗i = 0. In this case, we know β∗i = C, which is nonzero, and therefore ξ∗i = 0.
That is, if for point i we have that α∗i = 0 by the dual problem, then we know that there is
no slack given to this point. Looking at the other complementary slackness condition, this
makes sense because if α∗i = 0, then yi(w∗>xi − b∗) − (1 − ξ∗i ) may be any value, and if
we’re minimizing the sum of our ξi’s, we should have ξ∗i = 0. So, point i lies on or outside
the margin.

• Case 2: α∗i is nonzero. If this is the case, then we know β∗i = C − α∗i ≥ 0

– Case 2.1: α∗i = C. If this is the case, then we know β∗i = 0, and therefore ξ∗i may be
exactly 0 or nonzero. So, point i lies on or violates the margin.

– Case 2.2: 0 < α∗i < C. In this case, then β∗i is nonzero and ξ∗i = 0. But this is different
from Case 1 because with α∗i nonzero, we can divide by α∗i in the complementary slack-
ness condition and arrive at the fact that 1−yi(w∗>xi−b∗) = 0 =⇒ yi(w

∗>xi−b∗) = 1,
which means xi lies exactly on the margin determined by w∗ and b∗. So, point i lies on
the margin.

Using this information, let’s reconstruct the optimal primal values w∗, b∗, ξ∗i from the optimal dual
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values α∗:

w∗ =
n∑
i=1

α∗i yixi

b∗ = w∗>xi − yi if 0 < α∗i < C

ξ∗i =

{
1− yi(w∗>xi − b∗) if α∗i = C,

0 otherwise

(40)

The principal takeaway is that the optimal w∗ is a linear combination of the training points for
which the corresponding dual weight αi is non-zero. Such points are called support vectors,
because they determine the optimal w∗. There is a special relationship between the values of αi
and the position of xi relative to the margin. All training points that violate the decision boundary
have αi > 0 and are thus support vectors, while all training points that strictly do not violate the
decision boundary (meaning that they do not lie on the boundary) have αi = 0 and are not support
vectors. For training points which lie exactly on the boundary, some may have αi > 0 and some
may have αi = 0; only the points that are critical to determining the decision boundary have αi > 0
and are thus support vectors. Intuitively, there are very few support vectors compared to the total
number of training points, meaning that the dual vector α∗ is sparse. This is advantageous when
predicting class for a test point:

w∗>φ(x) + b∗ =
n∑
i=1

α∗i yiφ(xi)
>φ(x) + b∗ =

n∑
i=1

α∗i yik(xi,x) + b∗

We only have to make m � n kernel evaluations to predict a test point, where m is the number
of support vectors. It should now be clear why the dual SVM problem is so useful: it allows us to
use the kernel trick to eliminate dependence on the dimensionality of the argument feature space,
while also allowing us to discard most training points because they have dual weight 0.
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