1 Kernel k-Means

Suppose we have a dataset \(\{x_i\}_{i=1}^N, x_i \in \mathbb{R}^n \) that we want to split into \(K \) clusters. Furthermore, suppose we know a priori that this data is best clustered in a large feature space \(\mathbb{R}^m \), and that we have a feature map \(\phi : \mathbb{R}^n \rightarrow \mathbb{R}^m \). How should we perform clustering in this space?

(a) Write the objective for K-means clustering in the feature space (using the squared \(L_2 \) norm in the feature space). Do so by explicitly constructing cluster centers \(\{\mu_k\}_{k=1}^K \) with all \(\mu_k \in \mathbb{R}^m \).

(b) Write an algorithm that minimizes the objective in (a).

(c) Write an algorithm that minimizes the objective in (a) without explicitly constructing the cluster centers \(\{\mu_k\} \). Assume you are given a kernel function \(\kappa(x, y) = \phi(x) \cdot \phi(y) \).