1 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of a statistical model given observations, by finding the parameters that maximize the likelihood of the observations. Concretely, given observations y_1, y_2, \ldots, y_n distributed according to $p_{\theta}(y_1, y_2, \ldots, y_n)$ (here p_{θ} can be a probability mass function for discrete observations or a density for continuous observations), the likelihood function is defined as $L(\theta) = p_{\theta}(y_1, y_2, \ldots, y_n)$ and the MLE is

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\alpha} L(\theta).$$

We often make the assumption that the observations are *independent and identically distributed* or iid, in which case $p_{\theta}(y_1, y_2, ..., y_n) = p_{\theta}(y_1) \cdot p_{\theta}(y_2) \cdot \cdots \cdot p_{\theta}(y_n)$.

- (a) Your friendly TA recommends maximizing the log-likelihood $\ell(\theta) = \log L(\theta)$ instead of $L(\theta)$. Why does this yield the same solution $\hat{\theta}_{MLE}$? Why is it easier to solve the optimization problem for $\ell(\theta)$ in the iid case? Given the observations y_1, y_2, \dots, y_n , write down both $L(\theta)$ and $\ell(\theta)$ for the Gaussian $f_{\theta}(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y-\mu)^2}{2\sigma^2}}$ with $\theta = (\mu, \sigma)$.
- (b) The Poisson distribution is $f_{\lambda}(y) = \frac{\lambda^{y}e^{-\lambda}}{y!}$. Let Y_1, Y_2, \dots, Y_n be a set of independent and identically distributed random variables with Poisson distribution with parameter λ . Find the joint distribution of Y_1, Y_2, \dots, Y_n . Find the maximum likelihood estimator of λ as a function of observations y_1, y_2, \dots, y_n .

1

2 Independence and Multivariate Gaussians

As described in lecture, a covariance matrix $\Sigma \in \mathbb{R}^{N \times N}$ for a random variable $X \in \mathbb{R}^N$ with the following values, where $\operatorname{cov}(X_i, X_j) = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)]$ is the covariance between the *i*-th and *j*-th elements of the random vector *X*:

$$\Sigma = \begin{bmatrix} \operatorname{cov}(X_1, X_1) & \dots & \operatorname{cov}(X_1, X_n) \\ \dots & \dots & \dots \\ \operatorname{cov}(X_n, X_1) & \dots & \operatorname{cov}(X_n, X_n) \end{bmatrix}.$$
 (1)

Recall that the density of an N dimensional Multivariate Gaussian Distribution $\mathcal{N}(\mu, \Sigma)$ is defined as follows when Σ is positive definite:

$$f(x) = \frac{1}{\sqrt{(2\pi)^N |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)}.$$
(2)

Here, $|\Sigma|$ denotes the determinant of the matrix Σ .

- (a) Consider the random variables *X* and *Y* in \mathbb{R} with the following conditions.
 - (i) X and Y can take values $\{-1, 0, 1\}$.
 - (ii) When X is 0, Y takes values 1 and -1 with equal probability $(\frac{1}{2})$. When Y is 0, X takes values 1 and -1 with equal probability $(\frac{1}{2})$.
 - (iii) Either X is 0 with probability $(\frac{1}{2})$, or Y is 0 with probability $(\frac{1}{2})$.

Are X and Y uncorrelated? Are X and Y independent? Prove your assertions. *Hint:* Write down the joint probability of (X, Y) for each possible pair of values they can take.

- (b) For X = [X₁, · · · , X_n]^T ~ N(μ, Σ), verify that if X_i, X_j are independent (for all i ≠ j), then Σ must be diagonal, i.e., X_i, X_j are uncorrelated.
- (c) Let N = 2, $\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, and $\Sigma = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$. Suppose $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathcal{N}(\mu, \Sigma)$. Show that X_1, X_2 are **independent if** $\beta = 0$. Recall that two continuous random variables W, Y with joint density $f_{W,Y}$ and marginal densities f_W, f_Y are independent if $f_{W,Y}(w, y) = f_W(w)f_Y(y)$.
- (d) Consider a data point x drawn from an N-dimensional zero mean Multivariate Gaussian distribution N(0, Σ), as shown above. Assume that Σ⁻¹ exists. Prove that there exists a matrix A ∈ ℝ^{N×N} such that x^TΣ⁻¹x = ||Ax||₂² for all vectors x. What is the matrix A?

- 3 Least Squares (using vector calculus)
- (a) In ordinary least-squares linear regression, we typically have n > d so that there is no w such that $\mathbf{Xw} = \mathbf{y}$ (these are typically overdetermined systems too many equations given the number of unknowns). Hence, we need to find an approximate solution to this problem. The residual vector will be $\mathbf{r} = \mathbf{Xw} \mathbf{y}$ and we want to make it as small as possible. The most common case is to measure the residual error with the standard Euclidean ℓ^2 -norm. So the problem becomes:

$$\min_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

Where $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{w} \in \mathbb{R}^{d}$, $\mathbf{y} \in \mathbb{R}^{n}$. Derive using vector calculus an expression for an optimal estimate for \mathbf{w} for this problem assuming \mathbf{X} is full rank.

- (b) How do we know that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible?
- (c) What should we do if **X** is not full rank?