CS 189/289A Introduction to Machine Learning

Fall 2023 Jennifer Listgarten, Jitendra Malik

1 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of a statistical model given observations, by finding the parameters that maximize the likelihood of the observations. Concretely, given observations $y_{1}, y_{2}, \ldots, y_{n}$ distributed according to $p_{\theta}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ (here p_{θ} can be a probability mass function for discrete observations or a density for continuous observations), the likelihood function is defined as $L(\theta)=p_{\theta}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and the MLE is

$$
\hat{\theta}_{\mathrm{MLE}}=\arg \max _{\theta} L(\theta) .
$$

We often make the assumption that the observations are independent and identically distributed or iid, in which case $p_{\theta}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=p_{\theta}\left(y_{1}\right) \cdot p_{\theta}\left(y_{2}\right) \cdots \cdot p_{\theta}\left(y_{n}\right)$.
(a) Your friendly TA recommends maximizing the \log-likelihood $\ell(\theta)=\log L(\theta)$ instead of $L(\theta)$. Why does this yield the same solution $\hat{\theta}_{\text {MLE }}$? Why is it easier to solve the optimization problem for $\ell(\theta)$ in the iid case? Given the observations $y_{1}, y_{2}, \ldots, y_{n}$, write down both $L(\theta)$ and $\ell(\theta)$ for the Gaussian $f_{\theta}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(\gamma-\mu)^{2}}{2 \sigma^{2}}}$ with $\theta=(\mu, \sigma)$.
(b) The Poisson distribution is $f_{\lambda}(y)=\frac{x^{y} e^{-\lambda}}{y!}$. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a set of independent and identically distributed random variables with Poisson distribution with parameter λ. Find the joint distribution of $Y_{1}, Y_{2}, \ldots, Y_{n}$. Find the maximum likelihood estimator of λ as a function of observations $y_{1}, y_{2}, \ldots, y_{n}$.

2 Independence and Multivariate Gaussians

As described in lecture, a covariance matrix $\Sigma \in \mathbb{R}^{N \times N}$ for a random variable $X \in \mathbb{R}^{N}$ with the following values, where $\operatorname{cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]$ is the covariance between the i-th and j-th elements of the random vector X :

$$
\Sigma=\left[\begin{array}{ccc}
\operatorname{cov}\left(X_{1}, X_{1}\right) & \ldots & \operatorname{cov}\left(X_{1}, X_{n}\right) \tag{1}\\
\ldots & & \ldots \\
\operatorname{cov}\left(X_{n}, X_{1}\right) & \ldots & \operatorname{cov}\left(X_{n}, X_{n}\right)
\end{array}\right]
$$

Recall that the density of an N dimensional Multivariate Gaussian Distribution $\mathcal{N}(\mu, \Sigma)$ is defined as follows when Σ is positive definite:

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{(2 \pi)^{N}|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)} \tag{2}
\end{equation*}
$$

Here, $|\Sigma|$ denotes the determinant of the matrix Σ.
(a) Consider the random variables X and Y in \mathbb{R} with the following conditions.
(i) X and Y can take values $\{-1,0,1\}$.
(ii) When X is $0, Y$ takes values 1 and -1 with equal probability $\left(\frac{1}{2}\right)$. When Y is $0, X$ takes values 1 and -1 with equal probability $\left(\frac{1}{2}\right)$.
(iii) Either X is 0 with probability $\left(\frac{1}{2}\right)$, or Y is 0 with probability $\left(\frac{1}{2}\right)$.

Are X and Y uncorrelated? Are X and Y independent? Prove your assertions. Hint: Write down the joint probability of (X, Y) for each possible pair of values they can take.
(b) For $X=\left[X_{1}, \cdots, X_{n}\right]^{\top} \sim \mathcal{N}(\mu, \Sigma)$, verify that if X_{i}, X_{j} are independent (for all $i \neq j$), then Σ must be diagonal, i.e., X_{i}, X_{j} are uncorrelated.
(c) Let $N=2, \mu=\binom{0}{0}$, and $\Sigma=\left(\begin{array}{ll}\alpha & \beta \\ \beta & \gamma\end{array}\right)$. Suppose $X=\binom{X_{1}}{X_{2}} \sim \mathcal{N}(\mu, \Sigma)$. Show that X_{1}, X_{2} are independent if $\beta=0$. Recall that two continuous random variables W, Y with joint density $f_{W, Y}$ and marginal densities f_{W}, f_{Y} are independent if $f_{W, Y}(w, y)=f_{W}(w) f_{Y}(y)$.
(d) Consider a data point x drawn from an N-dimensional zero mean Multivariate Gaussian distribution $\mathcal{N}(0, \Sigma)$, as shown above. Assume that Σ^{-1} exists. Prove that there exists a matrix $A \in \mathbb{R}^{N \times N}$ such that $x^{\top} \Sigma^{-1} x=\|A x\|_{2}^{2}$ for all vectors x. What is the matrix A ?

3 Least Squares (using vector calculus)

(a) In ordinary least-squares linear regression, we typically have $n>d$ so that there is no \mathbf{w} such that $\mathbf{X w}=\mathbf{y}$ (these are typically overdetermined systems - too many equations given the number of unknowns). Hence, we need to find an approximate solution to this problem. The residual vector will be $\mathbf{r}=\mathbf{X w}-\mathbf{y}$ and we want to make it as small as possible. The most common case is to measure the residual error with the standard Euclidean ℓ^{2}-norm. So the problem becomes:

$$
\min _{\mathbf{w}}\|\mathbf{X} \mathbf{w}-\mathbf{y}\|_{2}^{2}
$$

Where $\mathbf{X} \in \mathbb{R}^{n \times d}, \mathbf{w} \in \mathbb{R}^{d}, \mathbf{y} \in \mathbb{R}^{n}$. Derive using vector calculus an expression for an optimal estimate for \mathbf{w} for this problem assuming \mathbf{X} is full rank.
(b) How do we know that $\mathbf{X}^{\top} \mathbf{X}$ is invertible?
(c) What should we do if \mathbf{X} is not full rank?

