
CS 189/289A Introduction to Machine Learning
Fall 2023 Jennifer Listgarten, Jitendra Malik DIS4

1 Initialization of Weights for Backpropagation
Assume a fully-connected 1-hidden-layer network. Denote the dimensionalities of the input, hid-
den, and output layers as d(0), d(1), and d(2). That is, the input (which we will denote with a
superscript (0)) is a vector of the form x(0)

1 , . . . , x
(0)
d(0) . Let g denote the activation function applied

at each layer. We will let S (l)
j =

∑d(l−1)

i=1 w(l)
i j x(l−1)

i be the weighted input to node j in layer l, and let
δ(l)

j =
∂ℓ

∂S (l)
j

be the partial derivative of the final loss ℓ with respect to S (l)
j .

Recall that backpropagation is an efficient method to compute the gradient of the loss function so
we can use it for gradient descent. Gradient descent requires the parameters to be initialized to
some value(s).

(a) To better orient yourself with the operations described in this 1-hidden-layer network, draw
out a diagram of the layers, including weights, activation functions, and the outputs of each
operation during the forward pass. In addition, identify where the partial derivatives δ(l)

j are
calculated during backpropagation.

Solution:

Figure 1: Simple diagram of the 1-hidden layer network

Note that the output layer does not necessarily have to include an activation function (and often
in practice does not); we add one here for consistency.

DIS4,©UCB CS 189/289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 1



(b) Imagine that we initialize every element of each weight w(l) to be the same constant scalar
value a. After performing the forward pass, what is the value of x(1)

j in terms of the elements
of {x(0)

i : i = 1, . . . , d(0)}? What is the relationship between each x(1)
j ?

Solution: Since all of the weights are equal, we have:

x(1)
j = g

 d(0)∑
i=1

w(1)
i j x(0)

i

 = g

a d(0)∑
i=1

x(0)
i


Note that this equation does not depend on j so all x(1)

j are equal.

(c) Following from the previous part, after the backward pass of backpropagation, compute the
values for each member of the set {δ(1)

i : i = 1, . . . , d(1)}, assuming we have calculated {δ(2)
j :

j = 1, . . . , d(2)}. What is the relationship between each δ(1)
i ?

Solution: Since all of the weights are equal:

δ(1)
i =

d(2)∑
j=1

δ(2)
j w(2)

i j g′(S (1)
i )

= g′(S (1)
i )a

d(2)∑
j=1

δ(2)
j

= g′

a d(0)∑
k=1

x(0)
k

 a
d(2)∑
j=1

δ(2)
j

The sum term within the activation function is the same for all dimensions i in layer 1 (note
that this is not referring to being the same across all nodes, but rather the entries within each
node.) The members of the set are equal.

(d) For a reasonable loss function, are all of the δ(2)
i equal to each other? Why or why not?

Solution: No. δ(2)
i depends on yi, which is different for each i. Note that any reasonable

output loss/activation should result in δ(2)
i depending on a target yi (otherwise the output is not

attempting to approach a particular target value).

(e) After the weights are updated and one iteration of gradient descent has been completed, what
can we say about the weights?

Solution: Our gradient descent update looks like this, for some learning rate η:

w(l)
i j = w(l)

i j − ηδ
(l)
j x(l−1)

i = a − ηδ(l)
j x(l−1)

i

=⇒ w(1)
i j = a − ηδ(1)

j x(0)
i

=⇒ w(2)
i j = a − ηδ(2)

j x(1)
i

For a given i, w(1)
i j will be the same for all j because δ(1)

j is equal for all j.

For a given j, w(2)
i j will be the same for all i because x(1)

i is equal for all i.

DIS4,©UCB CS 189/289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 2



(f) In the previous part, you showed that w(2)
i j is different for each j, but for a fixed j, it is the same

for each i. In fact, no matter how many subsequent iterations of gradient descent you take, this
property will continue to be true. Show why this is the case.

Solution: Let w(1)
i j = w(1)

i for all i. Let w(2)
i j = w(2)

j for all j. Then:

x(1)
j = g

 d(0)∑
i=1

w(1)
i j x(0)

i

 = g

 d(0)∑
i=1

w(1)
i x(0)

i


Which does not depend on j. Also,

δ(1)
i =

d(2)∑
j=1

δ(2)
j w(2)

i j g′

 d(0)∑
k=1

w(1)
ki x(0)

k

 = d(2)∑
j=1

δ(2)
j w(2)

j g′

 d(0)∑
k=1

w(1)
k x(0)

k


Which does not depend on i.

All x(1)
j being the same and all δ(1)

i being the same will continue no matter how many iterations
you perform. Intuitively, x(1)

j will always be the same for all j, due to the “outgoing” symmetry
in the weights in layer 1, and the δ(1)

i will always be the same due to the “incoming” symmetry
in the weights in layer 2.

(g) To solve this problem, we randomly initialize our weights. This is called symmetry breaking.
Note that for logistic regression, we don’t run into this issue; that is, gradient descent will find
the optimal values of the weights even if we initialize them at 0. Explain why this discrepancy
exists between our 1-hidden-layer neural network and logistic regression.

Solution: Logistic regression is a fully-connected neural network with one output node and
zero hidden layers (remember that the δ(2)

j ’s are different).

Another reason, following the above logic: in logistic regression, the loss function is convex.
Any starting point should lead us to the global optimum.

2 Backpropagation Practice
(a) Chain rule of multiple variables: Assume that you have a function given by f (x1, x2, . . . , xn),

and that gi(w) = xi for a scalar variable w. What is its computation graph? Sketch out a
diagram of what the computation graph would look like. How would you compute

d
dw

f (g1(w), g2(w), . . . , gn(w))

?

Solution: This is the chain rule for multiple variables. In general, we have

d f
dw
=

n∑
i=1

∂ f
∂xi

∂xi

∂w
=
∂ f
∂x
∂x
∂w
.

DIS4,©UCB CS 189/289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 3



The function graph of this computation is given in Figure 2.

Figure 2: Example function computation graph

(b) Let w1,w2, . . . ,wn ∈ R
d, and we refer to these weights together as W ∈ Rn×d. We also have

x ∈ Rd and y ∈ R. Consider the function

f (W, x, y) =

y − n∑
i=1

ϕ(w⊤i x + bi)


2

.

Write out the function computation graph (also sometimes referred to as a pictorial representa-
tion of the network). This is a directed graph of decomposed function computations, with the
output of the function at one end, and the input to the function, x at the other end, where b are
the bias terms corresponding to each weight vector, i.e. b = [b1, · · · , bn].

Solution:
See Figure 3.

(c) Suppose ϕ(x) (from the previous part) is the sigmoid function, σ(x). Compute the partial
derivatives ∂ f

∂wi
and ∂ f

∂bi
. Use the computational graph you drew in the previous part to guide

you.

Solution: Denote r = y −
∑n

i=1 σ(w⊤i x + bi) and zi = w⊤i x + bi.

To remind ourselves, this is the ‘forward’ computation:

f = r2

r = y −
n∑

i=1

σ(zi)

DIS4,©UCB CS 189/289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 4



Figure 3: Example function computation graph

zi = w⊤i x + bi

Now the backward pass:

∂ f
∂r
= 2r

∂r
∂zi
= −σ(zi)(1 − σ(zi))

∂zi

∂wi
= x⊤

∂zi

∂bi
= 1

By applying chain rule

∂ f
∂wi
= 2(

n∑
j=1

σ(w⊤j x + b j) − y)σ(w⊤i x + bi)(1 − σ(w⊤i x + bi))x⊤

∂ f
∂bi
= 2(

n∑
j=1

σ(w⊤j x + b j) − y)σ(w⊤i x + bi)(1 − σ(w⊤i x + bi))

(d) Write down a single gradient descent update for w(t+1)
i and b(t+1)

i , assuming step size η. You
answer should be in terms of w(t)

i , b(t)
i , x, and y.

Solution:

w(t+1)
i ← w(t)

i − 2η(
n∑

j=1

σ(w(t)
j
⊤

x + b(t)
j ) − y)σ(w(t)

i
⊤

x + b(t)
i )(1 − σ(w(t)

i
⊤

x + b(t)
i ))x

DIS4,©UCB CS 189/289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 5



b(t+1)
i ← b(t)

i − 2η(
n∑

j=1

σ(w(t)
j
⊤

x + b(t)
j ) − y)σ(w(t)

i
⊤

x + b(t)
i )(1 − σ(w(t)

i
⊤

x + b(t)
i ))

(e) Define the cost function

ℓ(x) =
1
2
∥W (2)Φ

(
W (1)x + b

)
− y∥22, (1)

where W (1) ∈ Rd×d, W (2) ∈ Rd×d, and Φ : Rd → Rd is some nonlinear transformation. Compute
the partial derivatives ∂ℓ

∂x , ∂ℓ
∂W(1) , ∂ℓ∂W(2) , and ∂ℓ

∂b .

Solution: First, we write out the intermediate variable for our convenience.

x(1) = W (1)x + b

x(2) = Φ(x(1))
x(3) = W (2)x(2)

x(4) = x(3) − y

ℓ =
1
2
∥x(4)∥22.

Remember that the superscripts represents the index rather than the power operators. We have

∂ℓ

∂x(4) = x(4)⊤

∂ℓ

∂x(3) =
∂ℓ

∂x(4)

∂x(4)

∂x(3) =
∂ℓ

∂x(4)

∂ℓ

∂x(2) =
∂ℓ

∂x(3)

∂x(3)

∂x(2) =
∂ℓ

∂x(3) W (2)

∂ℓ

∂W (2) =
∂ℓ

∂x(3)

∂x(3)

∂W (2) = x(2) ∂ℓ

∂x(3)

∂ℓ

∂x(1) =
∂ℓ

∂x(2)

∂Φ

∂x(1)

∂ℓ

∂x
=
∂ℓ

∂x(1)

∂x(1)

∂x
=
∂ℓ

∂x(1) W (1)

∂ℓ

∂b
=
∂ℓ

∂x(1)

∂x(1)

∂b
=
∂ℓ

∂x(1)

∂ℓ

∂W (1) =
∂ℓ

∂x(1)

∂x(1)

∂W (1) = x
∂ℓ

∂x(1) .

The easy trick to solve the derivatives with respect to (each element of) a matrix is to “guess”
the ordering of the expression so that the dimensions match up on both sides. More formally,
we could express it as follows:

∂ℓ

∂x(3)

∂x(3)

∂W (2) =
∂ℓ

∂x(3) x(2) = Tr
(
∂ℓ

∂x(3) (·)x(2)
)
= Tr

(
x(2) ∂ℓ

∂x(3) (·)
)
= x(2) ∂ℓ

∂x(3) (2)

DIS4,©UCB CS 189/289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 6



(f) Suppose Φ is the identity map. Write down a single gradient descent update for W (1)
t+1 and W (2)

t+1
assuming step size η. Your answer should be in terms of W (1)

t ,W
(2)
t , bt and x, y.

Solution:

W (1)
t+1 ← W (1)

t − η(W
(2)
t )⊤

(
W (2)

t

(
W (1)

t x + bt

)
− y

)
x⊤

W (2)
t+1 ← W (2)

t − η
(
W (2)

t

(
W (1)

t x + bt

)
− y

)
(W (1)

t x + b)⊤

Side note: The computation complexity of computing the ∂ℓ
∂W for Equation (1) using the ana-

lytic derivatives and numerical (finite-difference) derivatives is quite different!

For numerical differentiation, we use the following first order formula:

∂ℓ

∂Wi j
=
ℓ
(
Wi j + ϵ, ·

)
− ℓ

(
Wi j, ·

)
ϵ

.

Which requires O(d4) operations to compute ∂ℓ
∂W . On the other hand, it only takes O(d2) oper-

ations to compute it analytically.

DIS4,©UCB CS 189/289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 7


	Initialization of Weights for Backpropagation 
	Backpropagation Practice 

