
CS 189/289A Introduction to Machine Learning
Fall 2023 Jennifer Listgarten, Jitendra Malik DIS7

1 The accuracy of learning decision boundaries
This problem exercises your basic probability (e.g. from 70) in the context of understanding why
lots of training data helps to improve the accuracy of learning things.

For each θ ∈ (1/3, 2/3), define fθ : [0, 1]→ {0, 1}, such that

fθ(x) =

1 if x > θ

0 otherwise.

The function is plotted in Figure 1.

Figure 1: Plot of function fθ(x) against x.

We draw samples X1, X2, . . . , Xn uniformly at random and i.i.d. from the interval [0, 1]. Our goal
is to learn an estimate for θ from n random samples (X1, fθ(X1)), (X2, fθ(X2)), . . . , (Xn, fθ(Xn)).

Let Tmin = max({13 } ∪ {Xi| fθ(Xi) = 0}). We know that the true θ must be larger than Tmin.

Let Tmax = min({ 23 } ∪ {Xi| fθ(Xi) = 1}). We know that the true θ must be smaller than Tmax.

The gap between Tmin and Tmax represents the uncertainty we will have about the true θ given the
training data that we have received.

(a) What is the probability that Tmax − θ > ϵ as a function of ϵ? And what is the probability
that θ − Tmin > ϵ as a function of ϵ?
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Solution: First note that when θ + ϵ > 2
3 we have that P(Tmax > θ + ϵ) ≤ P(Tmax >

2
3 ) = 0 by

definition of Tmax. We can see this by cases: if for all Xi where fθ(Xi) = 1 we have Xi >
2
3 ,

then Tmax =
2
3 ; if for at least one Xi where fθ(Xi) = 1 we have Xi <

2
3 , then Tmax <

2
3 . Hence

P(Tmax) ≤ 2
3 = 1.

For the case when θ+ϵ < 2
3 , the task is to find the probability of the event of the random variable

Tmax defined by E := {Tmax > θ + ϵ}. Note that because P({Tmax < θ}) = 0 or equivalently
{Tmax < θ} = ∅, the probability P(E) can alternatively be expressed by the probability of a
different event E0 = {θ ≤ Tmax ≤ θ + ϵ} in terms of

P(E) = P({Tmax > θ + ϵ} ∪ {Tmax < θ})
= 1 − P({θ ≤ Tmax ≤ θ + ϵ}) = 1 − P(E0).

Now consider the event E1 := {at least one Xi lies in [θ, θ+ϵ]}. You can now show that E0 = E1,
i.e.

{θ ≤ Tmax ≤ θ + ϵ} = {at least one Xi lies in [θ, θ + ϵ]}.

by definition of Tmax.

Going back to the original event E we thus find

P(E) = 1 − P(E0) = 1 − P(E1) = P(Ec
1)

where the complement Ec
1 = {no Xi lies in [θ, θ + ϵ]} =

⋂n
i=1{Xi < [θ, θ + ϵ]}.

Restating the probability of E in terms of an intersection of events on Xi now allows us to easily
find P(E) because of independence and uniform distribution of Xi, which reads

P(
n⋂

i=1

{Xi < [θ, θ + ϵ]}) =
n∏

i=1

P({Xi < [θ, θ + ϵ]}) = (1 − ϵ)n.

In summary, we obtain

P(Tmax − θ > ϵ) =

(1 − ϵ)
n θ + ϵ < 2

3

0 o.w.

Similar analysis applies to the second part, except our lower bound is 1
3 :

P(θ − Tmin > ϵ) =

(1 − ϵ)
n θ − ϵ > 1

3

0 o.w.

(b) Suppose that you would like the estimator θ̂ = (Tmax + Tmin)/2 for θ that is ϵ-close (defined as
|θ̂−θ| < ϵ, where θ̂ is the estimation and θ is the true value) with probability at least 1−δ. Both
ϵ and δ are some small positive numbers. Please bound or estimate how big of an n do you
need? You do not need to find the optimal lowest sample complexity n, an approximation
using results of question (a) is fine.
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Solution: One way to obtain θ̂ within a window of size 2ϵ is to have both Tmax and Tmin be
within ϵ of θ. To see this, define random variables L = θ − Tmin,U = Tmax − θ. When L < ϵ
and U < ϵ, we have θ − Tmin < ϵ and 0 < Tmax − θ. Adding the two inequalities, we have
θ − Tmin < Tmax − θ + ϵ, thus θ̂ − θ > −ϵ/2 > −ϵ. Similarly, with those conditions, we have
θ̂ − θ < ϵ. Thus L < ϵ and U < ϵ is a sufficient condition for θ̂ to be ϵ-close, that is

P(|θ̂ − θ| < ϵ) ≥ P({L < ϵ} ∩ {U < ϵ}).

Instead of lower bounding P({L < ϵ} ∩ {U < ϵ}) we upper bound the probability of the com-
plement of the event, which reads {L > ϵ} ∪ {U > ϵ}, via union bound as follows:

P({L > ϵ} ∪ {U > ϵ}) ≤ P({L > ϵ}) + P({U > ϵ}) ≤ 2(1 − ϵ)n

using the result in problem (a).

We must ensure that this probability is upper bounded by δ, which ensures that we succeed
with probability at least 1 − δ. Solving for n, we have

2(1 − ϵ)n < δ

n >
ln
(

2
δ

)
ln
(
1/(1 − ϵ)

) .
Again, using the approximation ln(1 − x) ∼ −x, we have n > 1

ϵ
ln(2/δ) for ϵ small.

(c) Let us say that instead of getting random samples (Xi, f (Xi)), we were allowed to choose
where to sample the function, but you had to choose all the places you were going to sample
in advance. Propose a method to estimate θ. How many samples suffice to achieve an
estimate that is ϵ-close as above? (Hint: You need not use a randomized strategy.)

Solution: Pick n points uniformly spaced on the interval ( 1
3 ,

2
3 ). Then, the ith sample Xi =

1
3 +

i
3n . Since we have n points, we create intervals of length 1

3n . If our intervals are smaller
than 2ϵ, we can guarantee that we estimate θ within an interval of 2ϵ. Solving for n, we have
1
3n < 2ϵ and so n > 1

6ϵ samples are sufficient.

Note that using our calculations the sample complexity for this deterministic method is always
lower than the sample complexity of the probabilistic method in problem (b) δ < 1 since
ln
(

2
δ
) > 1

6 for any δ < 1. Therefore, uniform sampling and allowing for some non-zero
probability that we do not obtain an ϵ-close estimator, does not require fewer samples than
a deterministic method which always ensures an ϵ-close estimator. In many other settings
however, allowing some uncertainty (of finding a good estimator) can help to reduce the sample
complexity significantly.

(d) Suppose that you could pick where to sample the function adaptively — choosing where to
sample the function in response to what the answers were previously. Propose a method to
estimate θ. How many samples suffice to achieve an estimate that is ϵ-close as above?
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Solution: Use binary search: start with three pointers, s = 1/3, e = 2/3 with m as the midpoint.
If f (m) = 0, set s = m and recompute the midpoint (i.e., search over the second half of the
range). Otherwise, f (m) = 1 and set e = m (i.e., search over the first half of the range). For
each point sampled, we reduce the size of the range by half, so after n points, the interval we
consider is 1

3·2n . We want this to be less than 2ϵ, and so

1
3 · 2n < 2ϵ =⇒ n > log2(

1
3ϵ

) − 1.

(e) In the three sampling approaches above: random, deterministic, and adaptive, compare the
scaling of n with ϵ (and δ as well for the random case).

Solution:

(a) For random, n is logarithmic in 1/δ. For ϵ, we use the approximation ln
(
1/(1 − ϵ)

)
∼ ϵ to

conclude that n is inversely related to ϵ.

(b) For deterministic, n is inversely related to ϵ. Note that this is the same scaling as choosing
random evaluation points.

(c) For adaptive, n is logarithmic in 1
ϵ
.

(f) Why do you think we asked this series of questions? What are the implications of those
results in a machine learning application?

Solution: We ask this question because we want to show how the number of training examples
affects the accuracy. Intuitively, more data lead to a more accurate estimator. We quantify this
intuition with a simple but concrete example.

The three sampling approaches are some common ways to get the training data. When most
of the real world datasets are collected, one doesn’t have any control on Xi. That is the ran-
dom sampling paradigm. The deterministic sampling paradigm refers to the scenario when
one could carefully design a set of Xi. One might think that the sample complexity of the de-
terministic case should be much better than that of the random one, however for this particular
model, they are not quite different. There is only a factor of log 1

δ
off. However, when we move

to the adaptive paradigm, the sample complexity is exponentially smaller.

For practical machine learning applications, the implication is that you want to have as much
control on the samples as you can (such as adaptive sampling) to learn a better model with the
same amount of data.
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2 The Classical Bias-Variance Tradeoff
Consider a random variable X, which has unknown mean µ and unknown variance σ2. Given n iid
realizations of training samples X1 = x1, X2 = x2, . . . , Xn = xn from the random variable, we wish
to estimate the mean of X. We will call our estimate of µ the random variable X̂, which has mean
µ̂. There are a few ways we can estimate µ given the realizations of the n samples:

1. Average the n samples: x1+x2+...+xn
n .

2. Average the n samples and one sample of 0: x1+x2+...+xn
n+1 .

3. Average the n samples and n0 samples of 0: x1+x2+...+xn
n+n0

.

4. Ignore the samples: just return 0.

In the parts of this question, we will measure the bias and variance of each of our estimators. The
bias is defined as

E[X̂ − µ]

and the variance is defined as
Var[X̂].

(a) What is the bias of each of the four estimators above?

Solution: E[X̂ − µ] = E[X̂] − µ, so we have the following biases:

(a) E[X̂] = E[ X1+X2+...+Xn
n ] = nµ

n =⇒ bias = 0

(b) E[X̂] = E[ X1+X2+...+Xn
n+1 ] = nµ

n+1 =⇒ bias = − 1
n+1µ

(c) E[X̂] = E[ X1+X2+...+Xn
n+n0

] = nµ
n+n0

=⇒ bias = − n0
n+n0
µ

(d) E[X̂] = 0 =⇒ bias = −µ

(b) What is the variance of each of the four estimators above?

Solution: The two key identities to remember are Var[A + B] = Var[A] + Var[B] (when A and
B are independent) and Var[kA] = k2 Var[A], where A and B are random variables and k is a
constant.

(a) Var[X̂] = Var[ X1+X2+...+Xn
n ] = 1

n2 Var[X1 + X2 + . . . + Xn] = 1
n2 (nσ2) = σ

2

n

(b) Var[X̂] = Var[ X1+X2+...+Xn
n+1 ] = 1

(n+1)2 Var[X1 + X2 + . . . + Xn] = 1
(n+1)2 (nσ2) = n

(n+1)2σ
2

(c) Var[X̂] = Var[ X1+X2+...+Xn
n+n0

] = 1
(n+n0)2 Var[X1 + X2 + . . . + Xn] = 1

(n+n0)2 (nσ2) = n
(n+n0)2σ

2

(d) Var[X̂] = 0

(c) Suppose we have constructed an estimator X̂ from some samples of X. We now want to know
how well X̂ estimates a new independent sample of X. Denote this new sample by X′. Derive
a general expression for E[(X̂ − X′)2] in terms of σ2 and the bias and variance of the estimator
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X̂. Similarly, derive an expression for E[(X̂ −µ)2]. Compare the two expressions and comment
on the differences between them.

Solution: Since X̂ is a function of X, we conclude that the random variables X̂ and X′ are
independent of each other. Now we provide two ways to solve the first problem.

Method 1: In this method, we use the trick of adding and subtracting a term to derive the
desired expression:

E[(X̂ − X′)2] = E[(X̂ − µ + µ − X′)2]
= E[(X̂ − µ)2] + E[(µ − X′)2]︸         ︷︷         ︸

=Var(X′)=σ2

= E[(X̂ − µ)2] + σ2

= E[(X̂ − E[X̂] + E[X̂] − µ)2] + σ2

= E[(X̂ − E[X̂])2]︸             ︷︷             ︸
=Var(X̂)

+ (E[X̂] − µ)2︸        ︷︷        ︸
=bias2

+2E[(X̂ − E[X̂]) · (E[X̂] − µ)]︸                             ︷︷                             ︸
=0

+σ2

Method 2: In this method, we make use of the definition of variance. We have

E[(X̂ − X′)2] = E[X̂2] + E[X′2] − 2E[X̂X′]
= (Var(X̂) + (E[X̂])2) + (Var(X′) + (E[X′])2) − 2E[X̂]E[X′]︸       ︷︷       ︸

independence

= (E[X̂]2 − 2E[X̂]E[X′] + E[X′]2) + Var(X̂) + Var(X′)︸  ︷︷  ︸
=Var(X)

= (E[X̂] − E[X′]︸︷︷︸
=E[X]=µ

)2 + Var(X̂) + Var(X)

= (E[X̂] − µ)2︸        ︷︷        ︸
=bias2

+Var(X̂) + σ2

The first term is equivalent to the bias of our estimator squared, the second term is the variance
of the estimator, and the last term is the irreducible error.

Now let’s do E[(X̂ − µ)2].

E[(X̂ − µ)2] = E[X̂2] + E[µ2] − 2E[X̂µ] (1)
= (Var(X̂) + E[X̂]2) + (Var(µ) + E[µ]2) − 2E[X̂µ] (2)
= (E[X̂]2 − 2E[X̂µ] + E[µ]2) + Var(X̂) + Var(µ) (3)
= (E[X̂] − E[µ])2 + Var(X̂) + Var(µ) (4)
= (E[X̂] − µ)2 + Var(X̂). (5)

Notice that these two expected squared errors resulted in the same expressions except for the
σ2 in E[(X̂ − X′)2]. The error σ2 is considered “irreducible error” because it is associated with
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the noise that comes from sampling from the distribution of X. This term is not present in the
second derivation because µ is a fixed value that we are trying to estimate.

(d) It is a common mistake to assume that an unbiased estimator is always “best.” Let’s explore
this a bit further. Compute E[(X̂ − µ)2] for each of the estimators above. Solution: Adding the
previous two answers:

(a) σ
2

n

(b) 1
(n+1)2 (µ2 + nσ2)

(c) 1
(n+n0)2 (n2

0µ
2 + nσ2)

(d) µ2

(e) Demonstrate that the four estimators are each just special cases of the third estimator, but with
different instantiations of the hyperparameter n0.

Solution: The derivation for the third estimator works for any value of n0. The first estimator
is just the third estimator with n0 set to 0:

x1 + x2 + . . . + xn

n + n0
=

x1 + x2 + . . . + xn

n + 0
+

x1 + x2 + . . . + xn

n
.

The second estimator is just the third estimator with n0 set to 1:

x1 + x2 + . . . + xn

n + n0
=

x1 + x2 + . . . + xn

n + 1
.

The last estimator is the limiting behavior as n0 goes to∞. In other words, we can get arbitrarily
close to the fourth estimator by setting n0 very large:

lim
n0→∞

x1 + x2 + . . . + xn

n + n0
= 0.

(f) What happens to bias as n0 increases? What happens to variance as n0 increases?

Solution:
One reason for increasing the samples of n0 is if you have reason to believe that X is centered
around 0. In increasing the number of zeros we are injecting more confidence in our belief
that the distribution is centered around zero. Consequently, in increasing the number of ”fake”
data, the variance decreases because your distribution becomes more peaked. Examining the
expressions for bias and variance for the third estimator, we can see that larger values of n0

result in decreasing variance ( n
(n+n0)2σ

2) but potentially increasing bias ( n0µ

n+n0
). Hopefully you

can see that there is a trade-off between bias and variance. Using an unbiased estimator is
not always optimal nor is using an estimator with small variance always optimal. One has to
carefully trade-off the two terms in order to obtain minimum squared error.
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