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1 Random Forest Motivation
Ensemble learning is a general technique to combat overfitting, by combining the predictions of
many varied models into a single prediction based on their average or majority vote.

(a) The motivation of averaging. Consider a set of uncorrelated random variables {Yi}
n
i=1 with

mean µ and variance σ2. Calculate the expectation and variance of their average. (In the
context of ensemble methods, these Yi are analogous to the prediction made by classifier i. )
Solution: The average of the Yi’s has the same expectation as each individual Yi:
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but less variance than each of the individual Yi’s:
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(b) Ensemble Learning – Bagging. In lecture, we covered bagging (Bootstrap AGGregatING).
Bagging is a randomized method for creating many different learners from the same data set.

Given a training set of size n, generate T random subsamples, each of size n′, by sampling
with replacement. Some points may be chosen multiple times, while some may not be chosen
at all. If n′ = n, around 63% are chosen, and the remaining 37% are called out-of-bag (OOB)
samples.

(a) Why 63%? Solution: Each sample has probability (1 − 1/n)n of not being selected. For
large n, (1 − 1/n)n ≈ limn→∞(1 − 1/n)n = 1/e � 0.368

(b) If we use bagging to train our model, How should we choose the hyperparameter T?
Recall, T is the number of subsamples, and typically, a few dozen to several thousand
trees are used, depending on the size and nature of the training set.

Solution: An optimal number of subsamples T can be found with validation. Alterna-
tively, we can observe the OOB error.

(c) In part (a), we see that averaging reduces variance for uncorrelated classifiers. Real-world pre-
diction will of course not be completely uncorrelated, but reducing correlation among decision
trees will generally reduce the final variance. Reconsider a set of correlated random variables
{Zi}

n
i=1. Suppose ∀i , j, Corr(Zi,Z j) = ρ. Calculate the variance of their average.
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Solution:

Var
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n(n − 1)σ2ρ
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n
σ2.

We can see that for large n, the first term dominates, which limits the benefit of averaging.

(d) Is a random forest of stumps (trees with a single feature split or height 1) a good idea in
general? Does the performance of a random forest of stumps depend much on the number
of trees? Think about the bias of each individual tree and the bias of the average of all these
random stumps.

Solution: Stumps generally have high bias; they are very simple models that cannot fit to any-
thing with reasonable complexity. If we treat {Zi} as the set of possibly correlated predictions
the stumps produce,

E

1
n

n∑
i=1

Zi

 = µz.

This tells us if each stump has high bias, averaging the predictions of all stumps will not reduce
this bias. Thus a random forest of stumps is generally a bad idea no matter how many stumps
we have.
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2 Concerns about Randomness
One may be concerned that the randomness introduced in random forests may cause trouble. For
example, some features or sample points may never be considered at all. In this problem we will
be exploring this phenomenon.

(a) Consider n training points in a feature space of d dimensions. Consider building a random
forest with T binary trees, each having exactly h internal nodes. Let m be the number of
features randomly selected (from among d input features) at each tree node. For this setting,
compute the probability that a certain feature (say, the first feature) is never considered for
splitting in any tree node in the forest.

Solution: The probability that it is not considered for splitting in a particular node of a partic-
ular tree is 1 − m

d . The subsampling of m features at each treenode is independent of all others.
There is a total of ht treenodes and hence the final answer is (1 − m

d )hT .

(b) Now let us investigate the possibility that some sample point might never be selected. Suppose
each tree employs n′ = n bootstrapped (sampled with replacement) training sample points.
Compute the probability that a particular sample point (say, the first sample point) is never
considered in any of the trees.

Solution: The probability that it is not considered in one of the trees is (1 − 1
n )n, which ap-

proaches 1/e as n → ∞. Since the choice for every tree is independent, the probability that it
is not considered in any of the trees is (1 − 1

n )nT , which approaches e−T as n→ ∞.

(c) Compute the values of the two probabilities you obtained in parts (b) and (c) for the case where
there are n = 50 training points with d = 5 features each, T = 25 trees with h = 8 internal
nodes each, and we randomly select m = 1 potential splitting features in each treenode. You
may leave your answer in a fraction and exponentiated form, e.g.,

(
51
100

)2
. What conclusions can

you draw about the concerns of not considering a feature or sample mentioned at the beginning
of the problem?

Solution: ( 4
5 )200 ≈ 4.15 ∗ 10−20 and (49

50 )1250 ≈ 1.07 ∗ 10−11. It is quite unlikely that a feature
will be missed, and extremely unlikely a sample will be missed.
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3 Hidden Markov Models: Math Review
A Hidden Markov Model is a Markov Process with unobserved (hidden) states.

Figure 1: Example Hidden Markov Chain

Consider the following system in R2, where Xn is the true state at any given time n and Yn is
our observation. Given an initial state X0, we move to future states by recursively multiplying
our current state with transformation matrix A and adding i.i.d. Standard Normal Gaussian noise.
When we take an observation Yn of the true state Xn, we are also exposed to i.i.d. Standard Normal
Gaussian Noise.

Xn+1 = AXn + N(0, I)
Yn = Xn + N(0, I)

Where we have the 2x2 transformation matrix A defined as follows:

A =
 .5 −.25
−.25 .75


If we restrict the initial state X0 to be a unit vector (∥X0∥2 = 1), determine the following

(a) What are the eigenvalues of A? Is A a positive semi-definite matrix? (Note that
√

5 = 2.236)

Solution: Remember that an eigenvector is a vector v such that Av = λv, where the constant λ
is the eigenvalue corresponding to v. We manipulate the above equation to be (A − λI)v = 0,
which implies that A − λI is a singular matrix since it has an eigenvalue of 0.

A − λI =
1

2 − λ −1
4

−1
4

3
4 − λ


We can take the determinant of the above matrix and set it to zero in order for the matrix to be
singular, giving us the following characteristic polynomial:

0 =
(
1
2
− λ

)(
3
4
− λ

)
−

(
−

1
4

)(
−

1
4

)
= λ2 −

5
4
λ +

3
8
−

1
16
= λ2 −

5
4
λ +

5
16
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λ =
1
2

5
4
±

√
25
16
− 4

(
5

16

) = 1
8

(5 ±
√

5)

Since λ > 0 for all possible values, it is a positive-semidefinite matrix (in fact, it is positive
definite).

(b) What is the ∥E[Y∞]∥2? Prove your assertion. Solution: Lets look at the first several expres-
sions of the true state X

X1 = AX0 +N(0, I)
X2 = A(AX0 + N(0, I)) +N(0, I)
X3 = A(A(AX0 +N(0, I)) +N(0, I)) +N(0, I)

We note that a particular state can be defined by our original state as follows Xn = AnX0 +
n−1∑
i=0

AiN(0, I). Thus, our observation of that is Yn = AnX0 + N(0, I) +
n−1∑
i=0

AiN(0, I).

Remember that since matrix A is a real symmetric matrix, we can use spectral decomposition
to prove that AN = (UDU⊤)N = UDNU⊤, where U is a unitary matrix and D is a diagonal
matrix of eigenvalues. Note that our eigenvalues are such that 0 < λ < 1. Therefore, DN =

0⇒ AN = 0.

Thus, when we take expectations and norm, we see that

∥ lim
n→∞
E[Yn]∥2 = ∥E[AnX0 +N(0, I) +

n−1∑
i=0

AiN(0, I)]∥2

= ∥E[N(0, I) +
n−1∑
i=0

AiN(0, I)]∥2

= ∥0∥2
= 0

(c) Consider the Frobenius Norm of an arbitrary M x N matrix Q, defined as

∥Q∥F =
√∑

i

∑
j

|Qi, j|
2

which indicates the “magnitude” or “largeness” of a matrix. Is ∥Var[Y∞]∥F finite or infinite?
Prove your assertion.

You may find the following facts to be useful:

(i) Triangle Inequality: ∥X + Y∥ ≤ ∥X∥+∥Y∥

(ii) Cauchy Schwarz: ∥XY∥ ≤ ∥X∥∥Y∥
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(iii) Geometric Sum:
∑∞

i=0 ari = a
1−r ∀r s.t. 0 < r < 1; a, r ∈ R

Solution: We will approach this part in the same way as part b). Remember from discussion
that for multidimensional i.i.d. random variables X,Y with variance I, and constant matrix B:

Var[BX] = BIB⊤ = BB⊤ Var[B+X] = Var[X] Var[X+Y] = Var[X]+Var[Y] = I+I = 2I

Therefore, if we examine limn→∞ Var[Yn], where we define N(0,I) = Q and note that A is
symmetric (A = A⊤), we see that:

lim
n→∞

Var[Yn] = Var[AnX0 +

n−1∑
i=0

AiQ + Q]

= Var[
n−1∑
i=0

AiQ] + Var[Q] =
n−1∑
i=0

Var[AiQ] + I

=

n−1∑
i=0

AiI(A⊤)i + I =
n−1∑
i=0

(AA⊤)i + I

=

n−1∑
i=0

(A)2i + I =
n−1∑
i=0

(UDU⊤)2i + I

=

n−1∑
i=0

UD2iU⊤ + I = U(
n−1∑
i=0

D2i)U⊤ + I

We could stop here and note that
n−1∑
i=0

D2i is finite since 0 < D1,1, D2,2 < 1. Thus, since D is

a diagonal matrix and Dn is also diagonal we can apply the geometric sum formula for each

term
n−1∑
i=0

(D1,1)2i and
n−1∑
i=0

(D2,2)2i. We then note that the sum is finite, that U and U⊤ will preserve

magnitude, and I is finite. Therefore, the above limit is finite, which means that ∥Var[Y∞]∥F is
also finite.

If we want to decompose further, we can use the Triangle Inequality and Cauchy Schwarz
Inequality:

∥ lim
n→∞

Var[Yn]∥F = ∥U

 n−1∑
i=0

D2i

U⊤ + I∥F

≤ ∥I∥F + ∥U

 n−1∑
i=0

D2i

U⊤∥F
≤ ∥I∥F + ∥U∥F ∥

 n−1∑
i=0

D2i

∥F ∥U⊤∥F
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We then use the same argument as before to show that the sum of diagonal matrices is a
geometric series, and note that I and U are finite matrices. Therefore, both have finite norms
and the sum must be finite.
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