- Do not open the exam before you are instructed to do so.
- The exam is closed book, closed notes except your one-page cheat sheet.
- Usage of electronic devices is forbidden. If we see you using an electronic device (phone, laptop, etc.) you will get a zero.
- You have 3 hours.
- Write your initials at the top right of each page (e.g., write "BR" if you are Ben Recht).
- Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.

First name	
Last name	
SID	
First and last name of student to your left	
First and last name of student to your right	

Q1. [10 pts] Inverse Gaussian Distribution

The inverse Gaussian distribution, denoted $\operatorname{IG}(\mu, \lambda)$, is a continuous distribution supported on $(0, \infty)$ and parameterized by two scalars $\mu>0$ and $\lambda>0$. For any $x \in(0, \infty)$, the probability density function $f(x ; \mu, \lambda)$ is given by

$$
f(x ; \mu, \lambda)=\sqrt{\frac{\lambda}{2 \pi x^{3}}} \exp \left\{-\frac{\lambda(x-\mu)^{2}}{2 \mu^{2} x}\right\} .
$$

(a) [3 pts] Suppose we draw n independent samples x_{1}, \ldots, x_{n} from $\operatorname{IG}(\mu, \lambda)$. Write down the log-likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \mu, \lambda\right)$.
(b) [2 pts] Is the function $\phi:(0, \infty) \longrightarrow \mathbb{R}$ defined as $\phi(\lambda)=\mathcal{L}\left(x_{1}, \ldots, x_{n} ; \mu, \lambda\right)$ convex, concave, or both? No need to justify your answer.
(c) $[5 \mathrm{pts}]$ Now assume that μ is known. Derive the maximum likelihood estimator $\widehat{\lambda}$ given n independent samples x_{1}, \ldots, x_{n} from $\operatorname{IG}(\mu, \lambda)$.

Q2. [25 pts] Multivariate Gaussians

Let x be a d-dimensional random vector distributed as a Gaussian with mean $\mu \in \mathbb{R}^{d}$ and positive definite covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$: that is, $x \sim N(\mu, \Sigma)$.
(a) [5 pts$]$ Let $v \in \mathbb{R}^{d}$. What are the mean and variance of $v^{\top} x$?
(b) [5 pts] What is the distribution of $v^{\top} x$?
(c) [5 pts] Suppose we get to choose v from the unit sphere (i.e. $\|v\|_{2}=1$). Write down a (unit-norm) choice of v that maximizes the variance of $v^{\top} x$.
(d) [5 pts] Let $z \sim N\left(0, I_{d}\right)$. Find a matrix A and a vector b such that $A z+b$ has the same distribution as x.
(e) [5 pts] Now find a matrix A and a vector b such that $A x+b$ has the same distribution as z.

Q3. [20 pts] Data Geometry

Consider the following two-dimensional data set:

Note that the mean of this data set is 0 .
(a) [5 pts] Suppose someone assigns a label $y_{i}=+1$ or $y_{i}=-1$ to every data point and we solve a Support Vector Machine (SVM) classification problem:

$$
\operatorname{minimize}_{w \in \mathbb{R}^{2}, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \max \left(1-y_{i}\left(w^{\top} x_{i}+b\right), 0\right)+\lambda\|w\|_{2}^{2} .
$$

Here, b is an unregularized bias term, and $\lambda>0$. Show that both components of w must be equal to each other.
(b) [5 pts] Suppose $\lambda=0$. Given the information provided, what can be said about the possible values for w ?
(c) [5 pts] Draw the principal components of this data set on the plot.
(d) [5 pts] What is the ratio of the smallest eigenvalue to the largest eigenvalue of the covariance matrix of this data?

Q4. [20 pts] Residual Neural Network

Consider the following neural network, which operates on scalars.

In this network, w_{1}, w_{2}, and w_{3} are scalars. The network takes the scalar x as input, and computes $z_{1}=w_{1} x$. The ReLU nonlinearity is then applied: $a_{1}=\operatorname{ReLU}\left(z_{1}\right)$. Next, the network computes $z_{2}=w_{2} a_{1}$ and applies the ReLU nonlinearity: $a_{2}=\operatorname{ReLU}\left(z_{2}\right)$. Next, $z_{3}=a_{1}+a_{2}$. Finally, $\hat{y}=w_{3} z_{3}$.

We will use the mean squared error loss function $L=\frac{1}{2}(y-\hat{y})^{2}$ to train this network. You may use $R(x)$ and $R^{\prime}(x)$ to denote ReLU and the derivative of ReLU respectively.
(a) $[5 \mathrm{pts}]$ Find $\frac{d L}{d w_{3}}$.
(b) $[5 \mathrm{pts}]$ Find $\frac{d L}{d w_{2}}$.
(c) $[5 \mathrm{pts}]$ Find $\frac{d L}{d w_{1}}$.
(d) [5 pts] How would the network change if we added a ReLU nonlinearity to unit z_{3} such that $a_{3}=\operatorname{ReLU}\left(z_{3}\right), \hat{y}=$ $w_{3} a_{3}$. Briefly explain your reasoning.

Q5. [35 pts] Feature Engineering

In this class, we have tried to emphasize the importance of good features. In this question, we'll take this a step further and see that good features need to be predictive on the training set, but also generalize well to unseen data.

Let n denote the number of UC Berkeley students, and let us assign an arbitrary ordering to all students. Let $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$ denote the ages of all the students. Our goal is to predict the age y of a new transfer student on campus based on some list of features. A natural feature choice could be, for example, year of study. But suppose we only have access to student ID (SID) numbers. You are a bit unsure how to use this information, so you ask some of your friends.

Note: For this question, assume that $n<10^{9}$.

One-hot encoding. You first ask your friend from Stanford how to encode a student ID into a feature vector. "Use one-hot encoding", your friend responds. You are a bit skeptical, but you proceed onwards. Since there are 9 digits in an SID, you one-hot encode each SID into an element of $\{0,1\}^{d}$ where $d=10^{9}$. Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ denote the encoded features of the training set stacked row-wise into a matrix $X \in \mathbb{R}^{n \times d}$, and $Y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ denote the age vector of students in the training set (note that $n<d$). You proceed to use regularized least squares and solve

$$
\begin{equation*}
\operatorname{minimize}_{w \in \mathbb{R}^{d}} \frac{1}{2}\|X w-Y\|_{2}^{2}+\frac{\lambda}{2}\|w\|_{2}^{2} \tag{1}
\end{equation*}
$$

(a) [3 pts] How does the regularization term $\left(\frac{\lambda}{2}\|w\|_{2}^{2}\right)$ ensure a unique solution to (1)?
(b) [5 pts] Compute the solution $w_{\star} \in \mathbb{R}^{10^{9}}$ to (1), assuming that $x_{i}=e_{i} \in \mathbb{R}^{d}$ where e_{i} denotes the i-th standard basis vector in \mathbb{R}^{d}. That is, someone sorted your data such that the i-th student has SID i. Your answer should only be expressed in terms of Y and λ.
Hint: You may perform this calculation either directly, or using the kernel trick.
(c) [3 pts] Compute predict $\left(x_{i}\right)=\left\langle w_{\star}, x_{i}\right\rangle$ for x_{i} in the training set.
(d) [3 pts] Suppose x is the feature vector for the transfer student who is not in the training set. Compute $\operatorname{predict}(x)=\left\langle w_{\star}, x\right\rangle$ for x not in the training set.

Logical features. Unsatisfied with the performance of one-hot encoding, you ask another friend from MIT what features to use. Your friend tells you to use the feature that is equal to 1 if the student goes to Berkeley, and 0 otherwise. You are even more skeptical, but you proceed onwards.
(e) [5 pts] Using the features $x_{i}=1$ for all $1 \leq i \leq n$, write the solution w_{\star} to the following unregularized problem:

$$
\operatorname{minimize}_{w \in \mathbb{R}} \frac{1}{2}\|X w-Y\|_{2}^{2}
$$

(f) [3 pts] Now compute predict $\left(x_{i}\right)=\left\langle w_{\star}, x_{i}\right\rangle$ using the w_{\star} from part (e) for x_{i} in the training set.
(g) [3 pts] Since the transfer student is a Berkeley student, the value of their feature will be $x=1$. Compute $\operatorname{predict}(x)=\left\langle w_{\star}, x\right\rangle$ using the w_{\star} when x is the transfer student who is not in the training set.

Combining features. Still unsatisfied with previous suggestions, we consider combining both the one-hot encoded features and the constant feature.
(h) [10 pts] We now consider $x_{i}=\left(e_{i}, 1\right) \in \mathbb{R}^{d+1}$, where $e_{i} \in \mathbb{R}^{d}$ as before. For simplicity, we set $\lambda=0$, and consider the following problem.

$$
\operatorname{minimize}_{w \in \mathbb{R}^{d+1}} \frac{1}{2}\|X w-Y\|_{2}^{2}
$$

Compute a minimizer w_{\star} of this problem, and predict (x) for x in and not in the training set.
Hint: The Sherman-Morrison formula states that for invertible A and column vectors u, v such that $1+$ $v^{\top} A^{-1} u \neq 0$,

$$
\left(A+u v^{\top}\right)^{-1}=A^{-1}-\frac{A^{-1} u v^{\top} A^{-1}}{1+v^{\top} A^{-1} u}
$$

Q6. [20 pts] Calibration

Suppose we attempt to solve a binary classification task with binary feature vectors. Specifically, we are given n data points $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ with $x_{i} \in\{0,1\}^{d}$ (i.e. each of the d feature values is either 0 or 1) and $y_{i} \in\{0,1\}$. Suppose we try to fit the standard linear logistic regression model:

$$
P(y=1 \mid x, w, b)=g\left(w^{\top} x+b\right)=\frac{1}{1+\exp \left(-w^{\top} x-b\right)} .
$$

We say that a model is calibrated if

$$
\frac{1}{n} \sum_{i=1}^{n} P\left(y_{i}=1 \mid x_{i}, w, b\right)=\frac{1}{n} \sum_{i=1}^{n} y_{i} .
$$

That is, if the average probability of labeling the data in class 1 is equal to the average number of occurrences of class 1 on the training set. Calibrated models are interesting because their predicted probabilities are more useful as an indicator of confidence.

Consider training the logistic regression model where we solve the optimization problem

$$
\operatorname{maximize}_{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \quad \sum_{i=1}^{n} \log P\left(y_{i} \mid x_{i}, w, b\right) .
$$

Let w_{\star}, b_{\star} denote the maximizing parameters.
(a) [5 pts] Show that the logistic model corresponding to the optimal w_{\star}, b_{\star} is calibrated.
(b) [5 pts] Let S_{j} denote the set of indices i where $X_{i j}=1$. We say a model is conditionally calibrated with respect to feature j if

$$
\frac{1}{\left|S_{j}\right|} \sum_{i \in S_{j}} P\left(y_{i}=1 \mid x_{i}, w, b\right)=\frac{1}{\left|S_{j}\right|} \sum_{i \in S_{j}}^{n} y_{i} .
$$

Show that the logistic model corresponding to the optimal w_{\star}, b_{\star} is calibrated with respect to every feature.
(c) [5 pts] Suppose we add a regularizer for the w parameters to the optimization problem:

$$
\operatorname{maximize}_{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \quad \sum_{i=1}^{n} \log P\left(y_{i} \mid x_{i}, w, b\right)+\lambda\|w\|_{2}^{2} .
$$

Is the logistic model corresponding to the optimal w_{\star}, b_{\star} calibrated? Is it calibrated with respect to every feature?
(d) [5 pts] Suppose someone gives you a classifying function $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ that inputs x and outputs a real number. We can produce a probability from this classifier by setting

$$
P(y=1 \mid x, f, \alpha, \beta)=\frac{1}{1+\exp (\alpha f(x)+\beta)}
$$

Show that one can always find values α and β such that the resulting probability estimates are calibrated.

