
CS 189 / 289A Introduction to Machine Learning
Fall 2023 Jennifer Listgarten, Jitendra Malik HW1
Due 09/08/22 11:59 PM PT

• Homework 1 consists of both written and coding questions.

• We prefer that you typeset your answers using LATEX or other word processing software.
If you haven’t yet learned LATEX, one of the crown jewels of computer science, now is a
good time! Neatly handwritten and scanned solutions will also be accepted for the written
questions.

• In all of the questions, show your work, not just the final answer.

• Start early. This is a long assignment. Most of the material is prerequisite material not
covered in lecture; you are responsible for finding resources to understand it.

Deliverables:

1. Submit a PDF of your homework to the Gradescope assignment entitled “HW 1 Write-Up”.
Please start each question on a new page. If there are graphs, include those graphs in the
correct sections. Do not put them in an appendix. We need each solution to be self-contained
on pages of its own.

• In your write-up, please state with whom you worked on the homework. This should be
on its own page and should be the first page that you submit.

• In your write-up, please copy the following statement and sign your signature under-
neath. If you are using LaTeX, you can type your full name underneath instead. We
want to make it extra clear so that no one inadvertently cheats.

“I certify that all solutions are entirely in my own words and that I have not
looked at another student’s solutions. I have given credit to all external sources
I consulted.”

• Replicate all of your code in an appendix. Begin code for each coding question on
a fresh page. Do not put code from multiple questions in the same page. When you
upload this PDF on Gradescope, make sure that you assign the relevant pages of your
code from the appendix to correct questions.

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 1

1 Gradients and Derivatives (13 points)

What is the derivative of the function f : R → R given by f (x) = 2x? From basic calculus,
we know that the answer is 2 everywhere. Fundamentally, the derivative is a best linear approx-
imation: for f (x) = 2x, anywhere we look, the linear transformation that best approximates f is
“multiplication by 2” (in fact, f is exactly equal to this linear transformation in our current exam-
ple). More precisely, for any differentiable function f , the derivative at a, denoted d f

dx (a), is the best
linear approximation of f at a. That is,

f (x) ≈ f (a) +
d f
dx

(a) ∗ (x − a)

for all x near a (the equation above is the line tangent to f at a). Equivalently, we can view d f
dx (a)

as the slope or the rate of change of f at a. Thus, the derivative of f (x) = 2x + 3 is also equal to 2
everywhere; constant shifts do not change the derivative.

This perspective is also handy in higher dimensions. Take the function f : Rn → Rk given by
f(x) = Ax where A ∈ Rk×n (i.e., A is a real-valued k × n matrix) and x ∈ Rn. How can we compute
the derivative now that one scalar has been replaced by a matrix, and the other by a vector? We
can simply recognize the fact that df

dx (x), also denoted by Df(x) in some texts, must be the linear
transformation that best approximates f at x. However, note that f : x 7→ Ax is nothing more than
multiplication by A, a linear transformation already. Thus, df

dx = A for all x ∈ Rn.

The derivative and gradient of a function of a vector

When f : Rn → R maps a vector to a scalar, the derivative at a point a ∈ Rn is a linear trans-
formation from Rn to R, represented by a row vector d f

dx (a) ∈ R1×n, that gives the best linear
approximation of f (x) near a. That is, for x − a small,

f (x) ≈ f (a) +
[
d f
dx

(a)
]

(x − a)

The gradient is the transpose of the derivative, ∇x f (x) =
[

d f
dx (x)
]⊤
∈ Rn. Note that it is a column

vector and not a row vector:
f (x) ≈ f (a) + [∇x f (a)]⊤(x − a)

Why do we bother to define the gradient? The fact that the gradient is the same shape as the input
is convenient, and its ith entry is the partial derivative of f with respect to the ith entry of the input:

[
∇x f (x)

]
i =
∂ f
∂xi

(x)

∇x f (x) =


∂ f
∂x1

(x)
...

∂ f
∂xn

(x)


HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 2

The derivative and gradient of a function of a matrix

Similarly, when f : Rn×m → R maps a matrix to a scalar, its derivative at A ∈ Rn×m is a linear
transformation from Rn×m to R that gives the best linear approximation of f (X) near A. That is,
for X − A small,

f (X) ≈ f (A) +
[

d f
dX

(A)
]

(X − A)

For any linear transformation T : Rn×m → R, there is a matrix B ∈ Rn×m associated with it such
that:

∀X ∈ Rn×m, T (X) = ⟨B,X⟩ := Tr
(
B⊤X
)

Thus, the transformation T can be represented by the matrix B. Don’t be intimidated if you haven’t
seen this before: Tr

(
B⊤X
)

is merely the matrix dot product between B and X in the same sense as
a regular vector dot product. It is equivalent to multiplying B and X element-wise and summing
up the entries of the resulting matrix, or flattening out both matrices and computing their vector
dot product (in fact, you should verify this fact yourself by expanding B⊤X and taking its trace).

We can now define the gradient ∇X f (X) ∈ Rn×m as the matrix representing the derivative linear
transformation from above, i.e.,

[
d f
dX (X)

]
(C) = ⟨∇X f (X),C⟩, for all C ∈ Rn×m. Therefore, the best

linear approximation of f (X) near A can be re-written as

f (X) ≈ f (A) + ⟨∇X f (A),X − A⟩

The gradient, as in the vector case, is also expressible as the matrix of partial derivatives of f with
respect to each entry of X:

[∇X f (X)]i j =
∂ f
∂Xi j

(X)

∇X f (X) =


∂ f
∂X11

(X) . . . ∂ f
∂X1m

(X)
...

. . .
...

∂ f
∂Xn1

(X) . . . ∂ f
∂Xnm

(X)


Note: just like the gradient with respect to a vector has the same dimension as said vector, the
gradient with respect to a matrix has the same shape as the matrix. The importance of this fact
will become clearer when we cover Gradient Descent.

The Hessian

Finally, we define the Hessian of a function f : Rn → R as the n × n matrix with elements[
∇2

x f (x)
]

i j
=
∂2 f
∂xi∂x j

(x).

The Hessian equals the derivative of the gradient, ∇2
x f (x) = d

dx [∇x f (x)]. If f has continuous
second order partial derivatives (and most functions you see in this course will indeed), this matrix
is symmetric.

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 3

Just like the derivative/gradient provides the “best linear approximation” to a vector function f (x)
near a point a ∈ Rn, the Hessian can be used to also define its “best quadratic approximation”:

f (x) ≈ f (a) +
[
∇x f (a)

]⊤ (x − a) +
1
2

(x − a)⊤[∇2
x f (a)](x − a)

Let’s get some practice with all of the concepts above through the following problems:

(a) (1 point) Let w ∈ Rn. Compute the gradient ∇x f (x) of

f : Rn → R, f (x) = w⊤x

(b) (2 points) Let A ∈ Rn×n. Compute the gradient ∇x f (x) of

f : Rn → R, f (x) = x⊤Ax

(c) (1 point) Compute the Hessian ∇2
x f (x) of the function above.

(d) (2 points) Let A ∈ Rm×n, y ∈ Rm. Compute the gradient ∇x f (x) of

f : Rn → R, f (x) = ∥Ax − y∥22.

Hint: you can use the chain rule of derivatives. Given vector spaces U,V,W and functions
f : U → W, z 7→ f(z) and g : V → U, x 7→ g(x) differentiable, we have

d
(
f ◦ g
)

dx
(x) =

[
df
dz

(g(x))
]
·

[
dg
dx

(x)
]

(e) (1 point) Let u ∈ Rm, v ∈ Rn. Compute the gradient ∇A f (A) of

f : Rm×n → R, f (A) = u⊤Av.

Hint: use the cyclic property of trace to write uT Av = Tr
(
uT Av

)
= Tr
(
vuT A

)
.

(f) (3 points) Let x ∈ Rn and y ∈ Rm. Compute the gradient ∇A f (A) of

f : Rm×n → R, f (A) = ∥Ax − y∥22.

Hint: Find the best linear approximation of f at A for some small perturbation ∆ ∈ Rm×n:

f (A + ∆) = f (A) +
[

d f
dA

(A)
]

(∆) + R(∆) = f (A) + ⟨∇A f (A),∆⟩ + R(∆)

Here, R(∆) represents any terms with a higher-order than linear dependence on ∆.

Hint: you may find the cyclic property of traces Tr(AB) = Tr(BA) helpful at some point.

(g) (3 points) Consider the function that maps a vector to its maximum entry, x 7→ maxi xi. While
this function is non-smooth, a common trick in machine learning is to use a smooth approxi-
mation, LogSumExp, defined as follows:

LSE : Rn → R, LSE(x) = ln

 n∑
i=1

exi

 .
One of the nice properties of this function is that it is convex, which can be proved by showing
that its Hessian matrix is positive semi-definite. To that end, compute its gradient and Hessian.
You do not need to prove that the Hessian is PSD.

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 4

2 Linear Algebra Review (14 points)

1. (3 points) Let A ∈ Rn×n be a symmetric matrix. Prove equivalence between these three
different definitions of positive semidefiniteness (PSD).

(a) For all x ∈ Rn, x⊤Ax ≥ 0.

(b) All the eigenvalues of A are nonnegative.

(c) There exists a matrix U ∈ Rn×n such that A = UU⊤.

Mathematically, we write positive semidefiniteness as A ⪰ 0.

2. (5 points) Now that we’re equipped with different definitions of positive semidefiniteness,
use them to prove the following properties of PSD matrices.

(a) If A and B are PSD, then 2A + 3B is PSD.

(b) If A is PSD, all diagonal entries of A are nonnegative: Aii ≥ 0,∀i ∈ [n].

(c) If A is PSD, the sum of all entries of A is nonnegative:
∑n

j=1
∑n

i=1 Ai j ≥ 0.

(d) If A and B are PSD, then Tr(AB) ≥ 0, where Tr(M) denotes the trace of M.

(e) If A and B are PSD, then Tr(AB) = 0 if and only if AB = 0.

3. (2 points) Let A ∈ Rn×n be a symmetric, PSD matrix. Write ∥A∥F as a function of the
eigenvalues of A.
Hint: Recall that ∥A∥F =

√
Tr(A⊤A). If you haven’t seen this before, you should try to prove

it. However, you can accept this as a given fact for this homework assignment.

4. (4 points) Let A ∈ Rn×n be a symmetric matrix. Prove that the largest eigenvalue of A is

λmax(A) = max
∥x∥2=1

x⊤Ax

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 5

3 Probability Potpourri (11 points)

1. (2 points) Recall the covariance of two random variables X and Y is defined as Cov(X,Y) =
E[(X − E[X])(Y − E[Y])]. For a multivariate random variable Z (i.e., each index of Z is a
random variable), we define the covariance matrix Σ such that Σi j = Cov(Zi,Z j). Concisely,
Σ = E[(Z − µ)(Z − µ)⊤], where µ is the mean value of the random column vector Z. Prove
that the covariance matrix is always positive semidefinite (PSD).
Hint: Use linearity of expectation.

2. (4 points) The probability that an archer hits her target when it is windy is 0.4; when it is not
windy, her probability of hitting the target is 0.7. On any shot, the probability of a gust of
wind is 0.3. Find the probability that

(i) on a given shot there is a gust of wind and she hits her target.

(ii) she hits the target with her first shot.

(iii) she hits the target exactly once in two shots.

(iv) there was no gust of wind on an occasion when she missed.

3. (2 points) An archery target is made of 3 concentric circles of radii 1/
√

3, 1 and
√

3 feet.
Arrows striking within the inner circle are awarded 4 points, arrows within the middle ring
are awarded 3 points, and arrows within the outer ring are awarded 2 points. Shots outside
the target are awarded 0 points.

Consider a random variable X, the distance of the strike from the center (in feet), and let the
probability density function of X be

f (x) =


2

π(1+x2) x > 0

0 otherwise

What is the expected value of the score of a single strike?

4. (3 points) Let X ∼ Pois(λ), Y ∼ Pois(µ). Given that X ⊥⊥ Y , derive an expression for
P(X = k | X + Y = n) where k = 0, . . . , n. What well-known probability distribution is this?
What are its parameters?

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 6

4 Gaussian basics (11 points)

The multivariate Gaussian distribution with mean µ ∈ Rd and positive semidefinite covariance
Σ ∈ Rd×d, denoted N(µ,Σ), has the probability density function

f (x; µ,Σ) =
1√

(2π)d|Σ|
exp
{
−

1
2

(x − µ)⊤Σ−1(x − µ)
}
.

Here |Σ| denotes the determinant of Σ. In this problem, we assume that the covariance Σ is invert-
ible and, therefore, positive definite, although there are multivariate Gaussians with non-invertible
covariance matrices. You may use the following facts without proof:

1. The Gaussian pdf integrates to 1:∫
Rd

f (x; µ,Σ) dx =
∫
Rd

1√
(2π)d|Σ|

exp
{
−

1
2

(x − µ)⊤Σ−1(x − µ)
}

dx = 1

2. Change of variables formula: let f be a smooth function from Rd → R, b ∈ Rd, and A ∈ Rd×d

be an invertible matrix. Then, performing the change of variable x 7→ z = Ax + b,∫
Rd

f (x) dx =
∫
Rd

f (A−1z − A−1b)|A−1| dz.

You don’t need to worry about smoothness when applying this fact; rest assured that polyno-
mials, exponentials, and products and compositions of smooth functions are smooth.

(a) (2 points) Let X ∼ N(µ,Σ). Show that E[X] = µ.

(b) (4 points) Show that Cov(X) = Σ.

(c) (2 points) Compute the moment generating function (MGF) of X: MX(λ) = E[eλ
⊤X], where

λ ∈ Rd. Note: moment generating functions have several interesting and useful properties, one
being that MX characterizes the distribution of X: if MX = MY , then X and Y have the same
distribution.

(d) (2 points) Using the fact that MGFs determine distributions, given A ∈ Rk×d, b ∈ Rk identify
the distribution of AX + b (don’t worry about covariance matrices being invertible).

(e) (1 point) Show that there exists an affine transformation of X that is distributed as the standard
multivariate Gaussian, N(0, Id). (Assume Σ is invertible.)

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 7

5 NumPy Intro (8 points)

NumPy is a library in Python that allows for efficient computation on matrices and vectors. Given
that machine learning’s foundations are in linear algebra, this library is widely used in ML research
and industry to develop models.

The following questions will help you get your bearings in NumPy, which will be useful for the
next questions and future homeworks. You’re allowed to look through NumPy documentation and
don’t need to cite it. You must use a NumPy-based implementation for each of the following
questions and it must be vectorized (e.g. you cannot implement dot product by hand instead of
using a NumPy primitive like np.dot or the @ operation).

Note: This is the only auto-graded question for this homework. Download hw1.py from Ed-
stem and fill out the functions. When done, you may submit to the HW 1 Code assignment on
Gradescope. Please do not change the filename or function names, since these are required for the
autograder to reference the file and functions correctly.

Hint: The staff solution for each subpart was done in 1-2 lines.

We will primarily use PyTorch for future assignments, but most of the functions we have here will
be identical in PyTorch.

(a) (2 points) Implement special reshape, which takes an ndarray with an arbitrary number of
dimensions and reduces it to 2 dimensions, so that the first n − 1 dimensions of the input get
combined into the first output dimension, and the last dimension of the input gets preserved in
the output. For example, an input ndarray of shape (3, 7, 2, 9) will result in an output ndarray
of shape (42, 9). More examples are given in the function signature.

(b) (2 points) Implement linear, which takes in an input 1-D ndarray (which we will call vector
from now on) x, weight matrix W, and bias vector b. Perform a linear transformation on x
using W and b using the formula y = Wx + b.

(c) (2 points) Implement sigmoid, which takes in an input vector and performs the sigmoid op-
eration on each element. The output ndarray should have the same shape as the input ndarray.
Recall that the sigmoid function on a scalar input is:

σ(x) =
1

1 + e−x

.

(d) (2 points) Implement two layer nn, which simulates the forward-propagation of a two-layer
neural network, given the weight matrices and bias vectors for layers 1 (W1 and b1) and 2
(W2 and b2) and an input vector x. For this neural network, you should perform a linear
transformation AND sigmoid activation after both layers. Note that you must use linear and
sigmoid in your implementation for this question.

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 8

6 Isocontours of Normal Distributions (6 points)

Let f (µ,Σ) be the probability density function of a normally distributed random variable in R2.

(a) (3 points) The spectral theorem allows us to factorize

Σ = UDU⊤, D =
λ1 0

0 λ2

 , U =
[
u1 u2

]
∈ R2×2,

where U has orthonormal columns u1 and u2 and D has positive diagonal entries (assume Σ is
invertible). Consider the level set

S = {x ∈ R2 : f (x; µ,Σ) = c},

i.e., the set of points x ∈ R2 such that the probability density of the Gaussian evaluates to c at
those points (c is some value 0 < c < (

√
(2π)d|Σ|)−1). Show that S is an ellipse, and compute

the direction of each axis and its semi-length in terms of u1, u2, λ1, λ2. For background, an
ellipse has two perpendicular axes. We consider the direction of an axis to be a unit vector that
is a scalar multiple of the vector pointing from the center of the ellipse to either endpoint of
the axis. By axis semi-length, we mean half the length of the line segment connecting the axis
endpoints. For more info, see https://en.wikipedia.org/wiki/Ellipse.

For parts (b) and (c), write code to plot the isocontours of the following functions, each on its own
separate figure. Plot at least 5 contours, enough to get a rough sense of the probability density.
Default settings of commonly used contour plotting functions probably suffice for this. You are
free to use Matplotlib, NumPy, and SciPy.

(b) (2 points) f (µ,Σ), where µ =
11
 and Σ =

1 0
0 2

.
(c) (1 point) f (µ,Σ), where µ =

−1
2

 and Σ =
2 1
1 4

.

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 9

https://en.wikipedia.org/wiki/Ellipse

7 Hands-on with data (10 points)

In the following problem, you will use two simple datasets to walk through the steps of a standard
machine learning workflow: inspecting your data, choosing a model, implementing it, and verify-
ing its accuracy. We have provided two datasets in the form of numpy arrays: dataset 1.npy and
dataset 2.npy. You can load each using NumPy’s np.load method; see https://numpy.org/doc
for more information if you are unfamiliar with the numpy library.

Each dataset is a two-column array with the first column consisting of n scalar inputs X ∈ Rn×1 and
the second column consisting of n scalar labels Y ∈ Rn×1. We denote each entry of X and Y with
subscripts:

X =


x1

x2
...

xn

 Y =


y1

y2
...

yn


and assume that yi is a (potentially stochastic) function of xi.

(a) (2 points) It is often useful to visually inspect your data and calculate simple statistics; this can
detect dataset corruptions or inform your method. For both datasets:

(i) Plot the data as a scatter plot.

(ii) Calculate the correlation coefficient between X and Y:

ρX,Y =
Cov(X,Y)
σXσY

in which Cov(X,Y) is the covariance between X and Y and σX is the standard deviation
of X.

Your solution may make use of the NumPy library only for arithmetic operations, matrix-
vector or matrix-matrix multiplications, matrix inversion, and elementwise exponentiation. It
may not make use of library calls for calculating means, standard deviations, or the correlation
coefficient itself directly.

(b) (1 point) We would like to design a function that can predict yi given xi and then apply it to new
inputs. This is a recurring theme in machine learning, and you will soon learn about a general-
purpose framework for thinking about such problems. As a preview, we will now explore one
of the simplest instantiations of this idea using the class of linear functions:

Ŷ = Xw. (1)

The parameters of our function are denoted by w ∈ R. It is common to denote predicted
variants of quantities with a hat, so Ŷ is a predicted label whereas Y is a ground truth label.

We would like to find a w∗ that minimizes the squared error JSE between predictions and
labels:

w∗ = argmin
w
JSE(w) = argmin

w
∥Xw − Y∥22.

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 10

https://numpy.org/doc/

Derive ∇wJSE(w) and set it equal to 0 to solve for w∗. (Note that this procedure for finding an
optimum relies on the convexity of JSE. You do not need to show convexity here, but it is a
useful exercise to convince yourself this is valid.)

(c) (1 point) Your solution w∗ should be a function of X and Y . Implement it and report its mean
squared error (MSE) for dataset 1. The mean squared error is the objective JSE from part
(b) divided by the number of datapoints:

JMSE(w) =
1
n
∥Xw − Y∥22.

Also visually inspect the model’s quality by plotting a line plot of predicted ŷ for uniformly-
spaced x ∈ [0, 10]. Keep the scatter plot from part (a) in the background so that you can
compare the raw data to your linear function. Does the function provide a good fit of the data?
Why or why not?

(d) (1 point) We are now going to experiment with constructing new features for our model. That
is, instead of considering models that are linear in the inputs, we will now consider models that
are linear in some (potentially nonlinear) transformation of the data:

Ŷ = Φw =


ϕ(x1)⊤

ϕ(x2)⊤
...

ϕ(xn)⊤

w,
where ϕ(xi),w ∈ Rm. Repeat part (c), providing both the mean squared error of your predictor
and a plot of its predictions, for the following features on dataset 1:

ϕ(xi) =
xi

1

 .
How do the plotted function and mean squared error compare? (A single sentence will suffice.)

Hint: the general form of your solution for w∗ is still valid, but you will now need to use
features Φ where you once used raw inputs X.

(e) (1 point) Now consider the quadratic features:

ϕ(xi) =


x2

i
xi

1

 .
Repeat part (c) with these features on dataset 1, once again providing short commentary on
any changes.

(f) (2 points) Repeat parts (c)-(e) with dataset 2.

(g) (2 points) Finally, we would like to understand which features Φ provide us with the best
model. To that end, you will implement a method known as k-fold cross validation. The
following are instructions for this method; deliverables for part (g) are at the end.

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 11

(i) Split dataset 2 randomly into k = 4 equal sized subsets. Group the dataset into 4 distinct
training / validation splits by denoting each subset as the validation set and the remaining
subsets as the training set for that split.

(ii) On each of the 4 training / validation splits, fit linear models using the following 5 poly-
nomial feature sets:

ϕ1(xi) =
xi

1

 ϕ2(xi) =


x2

i
xi

1

 ϕ3(xi) =


x3

i
x2

i
xi

1

 ϕ4(xi) =


x4

i
x3

i
x2

i
xi

1


ϕ5(xi) =



x5
i

x4
i

x3
i

x2
i

xi

1


This step will produce 20 distinct w∗ vectors: one for each dataset split and featurization
ϕ j.

(iii) For each feature set ϕ j, average the training and validation mean squared errors over all
training splits.

It is worth thinking about what this extra effort has bought us: by splitting the dataset into
subsets, we were able to use all available datapoints for model fitting while still having held-
out datapoints for evaluation for any particular model.

Deliverables for part (g): Plot the training mean squared error and the validation mean
squared error on the same plot as a function of the largest exponent in the feature set. Use
a log scale for the y-axis. Which model does the training mean squared error suggest is best?
Which model does the validation mean squared error suggest is best?

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 12

A Appendix
This appendix contains many ways to manipulate block matrices. Since each fact in here is some-
thing you can derive yourself using definitions (e.g. of matrix multiplication), you may use any of
them without proof.

A.1 Transposes of Block Matrices

[
x1 · · · xn

]⊤
=


x⊤1
...

x⊤n


x⊤1
...

x⊤n

 =
[
x1 · · · xn

]⊤
[
A B

]⊤
=

A⊤B⊤

AB
⊤ = [A⊤ B⊤

]
A B
C D

⊤ = A⊤ C⊤

B⊤ D⊤


A.2 Block Matrix Products
In the following, ei is the ith standard basis vector – it has a 1 in the ith coordinate and 0 in all other
coordinates.

[
x1 · · · xn

] 
y⊤1
...

y⊤n

 =
n∑

i=1

xiy⊤i


x⊤1
...

x⊤n


[
y1 · · · yn

]
=


x⊤1 y1 · · · x⊤1 yn
...
. . .

...

x⊤n y1 · · · x⊤n yn


e⊤i


x⊤1
...

x⊤n

 = x⊤i

[
x1 · · · xn

]
ei = xi

A
[
x1 · · · xn

]
=
[
Ax1 · · · Axn

]
HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 13


x⊤1
...

x⊤n

A =

x⊤1 A
...

x⊤n A


A
[
B C

]
=
[
AB AC

]AB
C = AC

BC


A.3 Block Diagonal Matrices


d1 0 · · · 0
0 d2 · · · 0
...
...
. . .

...

0 0 · · · dn



x⊤1
x⊤2
...

x⊤n

 =

d1x⊤1
...

dnx⊤n


A1 0 · · · 0
0 A2 · · · 0
...
...
. . .

...

0 0 · · · An



B1

B2
...

Bn

 =

A1B1

A2B2
...

AnBn


A.4 Quadratic Forms

x⊤Ay =
∑

i

∑
j

ai jxiy jxy
⊤ A B

C D

 xy
 = x⊤Ax + x⊤By + y⊤Cx + y⊤Dy.

Contributors:

• Aryan Jain

• Druv Pai

HW1,©UCB CS 189 / 289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 14

	Gradients and Derivatives (13 points)
	Linear Algebra Review (14 points)
	Probability Potpourri (11 points)
	Gaussian basics (11 points)
	NumPy Intro (8 points)
	Isocontours of Normal Distributions (6 points)
	Hands-on with data (10 points)
	Appendix
	Transposes of Block Matrices
	Block Matrix Products
	Block Diagonal Matrices
	Quadratic Forms

