
CS 189 / 289 Introduction to Machine Learning
Fall 2023 Jennifer Listgarten, Jitendra Malik HW5
Due 11/3/23 11:59 pm PT

• Homework 5 consists of both written and coding questions.

• We prefer that you typeset your answers using LATEX or other word processing software.
If you haven’t yet learned LATEX, one of the crown jewels of computer science, now is a
good time! Neatly handwritten and scanned solutions will also be accepted for the written
questions.

• In all of the questions, show your work, not just the final answer.

Deliverables:

1. Submit a PDF of your homework to the Gradescope assignment entitled “HW 5 Write-Up”.
Submit your code to the Gradescope assignment titled “HW5 Code”. Please start each
question on a new page. If there are graphs, include those graphs in the correct sections.
Do not put them in an appendix. We need each solution to be self-contained on pages of its
own.

• In your write-up, please state with whom you worked on the homework. This should be
on its own page and should be the first page that you submit.

• In your write-up, please copy the following statement and sign your signature under-
neath. If you are using LaTeX, you can type your full name underneath instead. We
want to make it extra clear so that no one inadvertently cheats.

“I certify that all solutions are entirely in my own words and that I have not
looked at another student’s solutions. I have given credit to all external sources
I consulted.”

• Replicate all of your code in an appendix. Begin code for each coding question on
a fresh page. Do not put code from multiple questions in the same page. When you
upload this PDF on Gradescope, make sure that you assign the relevant pages of your
code from the appendix to correct questions.

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 1



1 Exploring Bias Variance between Ridge and Least Squares Regression
Recall the statistical model for ridge regression from lecture. We have a design matrix X, where
the rows of X ∈ Rn×d are our data points xi ∈ R

d. We assume a linear regression model

Y = Xw∗ + z

where w∗ ∈ Rd is the true parameter we are trying to estimate, z = [z1, . . . , zn]⊤ ∼ N(0, σ2In), and
Y = [y1, . . . , yn]⊤ is the random variable representing our labels.

Throughout this problem, you may assume that X is full column rank. Given a realization of the
labels Y = y, recall these two estimators that we have studied so far:

wols = min
w∈Rd
∥Xw − y∥22

wridge = min
w∈Rd
∥Xw − y∥22 + λ∥w∥

2
2

(a) Write the solution for wols,wridge. No need to derive it

(b) Let ŵ ∈Rd denote any estimator of w∗. In the context of this problem, an estimator ŵ = ŵ(Y)
is any function which takes the data X and a realization of Y , and computes a guess of w∗.
Define the MSE (mean squared error) of the estimator ŵ as

MSE(ŵ) := E
[∥∥∥ŵ − w∗

∥∥∥2
2

]
.

Above, the expectation is taken w.r.t. the randomness inherent in z. Note that this is a multi-
variate generalization of the mean squared error we have seen previously.

Define µ̂ := E[ŵ]. Show that the MSE decomposes as such:

MSE(ŵ) =
∥∥∥µ̂ − w∗

∥∥∥2
2︸     ︷︷     ︸

Bias(ŵ)

+Tr(Cov(ŵ))︸        ︷︷        ︸
Var(ŵ)

Note that this is a multivariate generalization of the bias-variance decomposition we have seen
previously.

Hint: The inner product of two vectors is the trace of their outer product. Also, expectation
and trace commute so E[Tr(A)] = Tr(E[A]) for any square matrix A.

(c) Show that

E[wols] = w∗

E[wridge] = (X⊤X + λId)−1X⊤Xw∗

That is, Bias(wols) = 0, and hence wols is an unbiased estimator of w∗, whereas wridge is a
biased estimator of w∗.

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 2



(d) Let {γi}
d
i=1 denote the d eigenvalues of the matrix X⊤X. Show that

Tr(Cov(wols)) = σ2
d∑

i=1

1
γi
, Tr(Cov(wridge)) = σ2

d∑
i=1

γi

(γi + λ)2 .

Finally, use these formulas to conclude that

Var(wridge) < Var(wols) .

Note that this is opposite of the relationship between the bias terms.

Hint: Remember the relationship between the trace and the eigenvalues of a matrix. Also, for
the ridge variance, consider writing X⊤X in terms of its eigendecomposition UΣU⊤. Note that
X⊤X + λId has the eigendecomposition U(Σ + λId)U⊤.

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 3



2 Nearest Neighbors and Bayes Rrisk
A census of Middle Earth is conducted and the data from it is used to check the extent to which
we can predict if someone is an orc (class 0) or an elf (class 1) based on their age and height. We
design x = [A,H]T to be our feature vector, where A indicates the candidate’s age and H their
height. The census includes enough data that we can accurately estimate the posterior probability
P(y = 1|x) (and consequently P(y = 0 | x) = 1 − P(y = 1 | x)).

We label the regions above from left to right as R1 to R4 respectively. For illustrative simplicity, we
have made the conditional probability of being an elf piecewise constant over each of the regions
(that is, P(y = 1 | x) has the same value in region Ri).

(a) What is the Bayes risk in each of the four regions? Assume a 0-1 loss function.

Here, the Bayes risk means the probability of error of the optimum Bayes classifier that knows
the underlying pattern perfectly. The Bayes risk is the counterpart of the “irreducible error”
(from the bias-variance decomposition) since it reflects an intrinsic uncertainty that we cannot
remove when we are trying to do prediction based on the given information.

(b) Assume that the training data is dense enough so that all the nearest neighbors of a test sample
lie in the same region as the test sample itself. Now, consider a test sample x which falls in
region Ri. For i ∈ 1, 2, 3, 4, what is the probability that x and its nearest neighbor have different
labels y?

Here, we are assuming that the training data has labels generated by the same random process
that generates the labels at test time, and that the labels on training points are independent of
the labels on test points.

(c) What is the 1-nearest neighbor classification error rate in each region?

(d) Now we generalize the problem above.

R1 : P(y = 1|x) = 0
R2 : P(y = 1|x) = p

R3 : P(y = 1|x) = 1 − p

R4 : P(y = 1|x) = 1

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 4



where p is a probability between 0 and 0.5.

Calculate the answers to the previous questions under this generalization. Can you see why the
classification performance of 1-nearest neighbor with sufficiently dense training data is never
worse than twice the Bayes risk?

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 5



3 Running Time of k-Nearest neighbor Search Methods
The method of k-nearest neighbors is a fundamental conceptual building block of machine learn-
ing. A classic example is the k-nearest neighbor classifier, which is a non-parametric classifier
that finds the k closest examples in the training set to the test example, and then outputs the
most common label among them as its prediction. Generating predictions using this classifier re-
quires an algorithm to find the k closest examples in a possibly large and high-dimensional dataset,
which is known as the k-nearest neighbor search problem. More precisely, given a set of n points,
D = {x1 . . . , xn} ⊆ R

d and a query point z ∈ Rd, the problem requires finding the k points inD that
are the closest to z in Euclidean distance.

This problem explores the computational complexity of nearest-neighbor methods to show how
naı̈ve implementations perform very poorly as the dimensionality of the problem grows, but more
sophisticated use of randomized techniques can do better.

Overall Hint: In this problem, reading later parts will help you know what you need to do in earlier
parts in case you can’t figure it out. So, read ahead before asking a question.

(a) Let’s analyze the computational complexity of this algorithm. First, we consider the naı̈ve
exhaustive search algorithm, which computes the distance between z and all points in D and
then returns the k points with the shortest distance. This algorithm first computes distances
between the query and all points, then finds the k shortest distances using quickselect1. What
is the (average case) time complexity of running the overall algorithm for a single query?

(b) Decades of research have focused on devising a way of preprocessing the data so that the
k-nearest neighbors for each query can be found efficiently. “Efficient” means the time com-
plexity of finding the k-nearest neighbors is lower than that of the naı̈ve exhaustive search
algorithm—meaning that the complexity must be sublinear in n.

Many efficient algorithms for k-nearest neighbor search rely on a divide-and-conquer strategy
known as space partitioning. The idea is to divide the feature space into cells and maintain
a data structure that keeps track of the points that lie in each. Then, to find the k-nearest
neighbors of a query, these algorithms look up the cell that contains the query and obtain the
subset of points in D that lie in the cell and adjacent cells. Adjacent cells must be included in
case the query point is in the corner of its cell. Then, exhaustive search is performed on this
subset to find the k points that are the closest to the query.

For simplicity, we’ll consider the special case of k = 1 in the following questions, but note that
the various algorithms we’ll consider can be easily extended to the setting with arbitrary k. We
first consider a simple partitioning scheme, where we place a Cartesian grid (a rectangular grid
consisting of hypercubes) over the feature space.

How many cells need to be searched in total if the data points are one-dimensional? Two-
dimensional? d-dimensional? If each cell contains one data point, what is the time com-

1Quickselect is a counterpart of quicksort that just picks the top k in an unordered list. Instead of taking O(n log n) like quicksort
on average, it takes O(n). Just realize that there is no point in recursively sorting things that for sure aren’t going to be in the top k.

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 6



Figure 1: Illustration of the space partitioning scheme we consider. The data points are shown as blue circles
and the query is shown as the red square. The cell boundaries are shown as gold lines.

plexity for finding the 1-nearest neighbor in terms of d, assuming accessing any cell takes
constant time?

(c) In low dimensions, the divide-and-conquer method provides a significant speedup over naı̈ve
exhaustive search. However, in moderately high dimensions, its time complexity can grow
quickly. In the high dimensional case, we modify our divide-and-conquer algorithm to use the
naı̈ve exhaustive search instead. This behavior arises in many settings, and is known as the
curse of dimensionality. How do we overcome the curse of dimensionality? Since it arises
from the need to search adjacent cells, what if we don’t have cells at all?

Consider a new approach that simply projects all data points along a uniformly randomly
chosen direction and keeps all projections of data points in a sorted list. To find the 1-nearest
neighbor, the algorithm projects the query along the same direction used to project the data
points and uses binary search to find the data point whose projection is closest to that of the
query. Then it marches along the list to obtain k̃ points whose projections are the closest to
the projection of the query. Finally, it performs exhaustive search over these points and returns
the point that is the closest to the query. This is a simplified version of an algorithm known as
Dynamic Continuous Indexing (DCI).

Because this algorithm is randomized (since it uses a randomly chosen direction), there is a
non-zero probability that it returns the incorrect results. We are therefore interested in how
many points we need to exhaustively search over to ensure the algorithm succeeds with high
probability.

We first consider the probability that a data point that is originally far away appears closer to
the query under projection than a data point that is originally close. Without loss of generality,
we assume that the query is at the origin. Let vl ∈ Rd and vs ∈ Rd denote the far (long) and
close (short) vectors respectively, and u ∈ S d−1 ⊂ Rd is a vector drawn uniformly randomly
on the unit sphere which serves as the random direction. Then the event of interest is when{
|⟨vl,u⟩| ≤ |⟨vs,u⟩|

}
.

Assuming that 0, vl and vs are not collinear,2 consider the plane spanned by vl and vs, which
2If vl and vs are collinear, random projection will essentially always be able to tell which is which so we don’t bother to analyze

that case. Understanding why will help you do this problem.

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 7



we will denote as P. For any vector w, we use w∥ and w⊥ to denote the components of w in P
and P⊥ such that w = w∥ + w⊥.

If we use θ denote the angle of u∥ relative to vl, show that

Pr
(
|⟨vl,u⟩| ≤ |⟨vs,u⟩|

)
≤ Pr
(
|cos(θ)| ≤ ∥vs∥ 2/∥vl∥ 2

)
.

Hint: For w ∈ {vs, vl}, because w⊥ = 0, ⟨w,u⟩ = ⟨w,u∥⟩.

vs

vl

Pr
⇣���
D
vl,uk

E��� 
���
D
vs,uk

E���
⌘

D
vs,uk

E

D
vl,uk

E

uk

✓

Figure 2: Examples of “good” and “bad” projection directions. The blue lines denote possible projection
directions u∥. The isolated blue line represents a “good” projection direction, since the projection of vl is
longer than the projection of vs (both shown in green), thereby preserving the relative order between vl

and vs in terms of their lengths after projection. Any projection direction within the shaded region is a
“bad” projection direction, since the projection of vl would not be longer than the projection of vs, thereby
inverting the relative order between vl and vs after projection (shown in red).

(d) The algorithm would fail to return the correct 1-nearest neighbor if more than k̃ − 1 points
appear closer to the query than the 1-nearest neighbor under projection.

The following two statements will be useful:

• For any set of events {Ei}
N
i=1, the probability that at least m of them occur is at most

1
m

∑N
i=1 Pr (Ei).3

• Pr
(
|cos θ| ≤ ∥vs∥ 2/∥vl∥ 2

)
= 1 − 2

π
cos−1

(
∥vs∥ 2/∥vl∥ 2

)
.

Using the first statement, derive an upper bound on the probability that the algorithm
fails. Use x(i) to denote the ith closest point to the query z. Then use the second statement
to simplify the expression.

(e) The following plots show the query time complexities of naı̈ve exhaustive search, space par-
titioning, and DCI as functions of n and d. Curves of the same color correspond to the same
algorithm. (Assume that the failure probability of DCI is small) Which algorithm does each
color correspond to?

3This is a generalization of the union bound; the statement reduces to the union bound when k′ = 1. (See this paper Ke Li
and Jitendra Malik. Fast k-Nearest neighbor Search via Prioritized DCI. In Proceedings of the 34th International Conference on
Machine Learning, pages 2081–2090, 2017.)

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 8



Number of Points (n)

Q
u
e
ry

 T
im

e
 C

o
m

p
le

x
it

y

Ambient Dimensionality (d)

Q
u
e
ry

 T
im

e
 C

o
m

p
le

x
it

y

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 9



4 Decision Trees
Consider constructing a decision tree on data with d features and n training points where each
feature is real-valued and each label takes one of m possible values. The splits are two-way, and
are chosen to maximize the information gain. We only consider splits that form a linear boundary
parallel to one of the axes. We will only consider a standalone decision tree and not a random
forest (hence no randomization). Recall the definition of information gain:

IG(node) = H(S ) −
|S l|H(S l) + |S r|H(S r)

|S l| + |S r|

where S is set of samples considered at node, S l is the set of samples remaining in the left sub-tree
after node, S r is the set of samples remaining in the right sub-tree after node, and H(S ) is the
entropy over a set of samples:

H(S ) = −
C∑

i=1

pi log
(
pi
)

Here, C is the number of classes, and pi is the proportion of samples in S labeled as class i.

(a) Prove or give a counter-example: In any path from the root to a leaf, the same feature will
never be split on twice.

(b) Prove or give a counter-example: The information gain at the root is at least as much as the
information gain at any other node.
Hint: Think about the XOR function.

(c) Suppose that a learning algorithm is trying to find a consistent hypothesis when the labels are
actually being generated randomly. There are d Boolean features and 1 Boolean label, and n
examples are drawn uniformly from the set of 2d+1 possible examples with replacement. Cal-
culate the probability of finding a contradiction in the sampled data. For ease of computation,
you don’t have to consider the case where identical samples (samples with the same features
and same label) are drawn from the distribution.
Hint: a contradiction is reached if two samples with identical features but different labels are
drawn.

(d) Intuitively, how does the bias-variance trade-off relate to the depth of a decision tree?

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 10



5 Decision Trees and Random Forests
In this problem, you will implement decision trees and random forests for classification on two
datasets:

1. Titanic Dataset: predict if a person survived the sinking of the Titanic

2. Spam Dataset: predict if a message is spam

In lecture, you were given a basic introduction to decision trees and how such trees are learned
from training data. You were also introduced to random forests. Feel free to research different
decision-tree training techniques online.

(a) Implement the information gain (i.e., entropy of the parent node minus the weighted sum
of entropy of the child nodes) splitting rule for greedy decision tree learning. Include
your code below.
See decision tree starter.py for the recommended starter code. It contains a simplified
decision tree implementation that splits only on one feature at a time, using the functions you
implement.

Note: The sample implementation assumes that all features are continuous. You may convert
all your features to be continuous or augment the implementation to handle discrete features.

Note: You should NOT use any software package other than NumPy for part a.

(b) Before applying the decision-tree learning algorithm to the Titanic dataset, we will first pre-
process the dataset. In the real-world, pre-processing the data is a very important step since
real-life data can be quite imperfect. However, to make this problem easier, we have pro-
vided some code to preprocess the data. Look at the code and describe how we deal with the
following problems:

• Some data points are misssing class labels;

• Some features are not numerical values;

• Some data points are missing some features.

Now train a shallow decision tree on the Titanic dataset. (for example, a depth 3 tree,
although you may choose any depth that looks good).

Data Processing for Titanic Here is a brief overview of the fields in the Titanic dataset.

(a) survived - 1 is survived; 0 is not. This is the class label.

(b) pclass - Measure of socioeconomic status: 1 is upper, 2 is middle, 3 is lower.

(c) sex - Male/Female

(d) age - Fractional if less than 1.

(e) sibsp - Number of siblings/spouses aboard the Titanic

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 11



(f) parch - Number of parents/children aboard the Titanic

(g) ticket - Ticket number

(h) fare - Fare.

(i) cabin - Cabin number.

(j) embarked - Port of Embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)

(c) Use sklearn to train a shallow decision tree on the Titanic and spam datasets. (for exam-
ple, a depth 3 tree, although you may choose any depth that looks good). Include your code
for it below. Additionally, visualize your tree. Include for each non-leaf node the feature
name and the split rule, and include for leaf nodes the class your decision tree would assign.

We provide you a code snippet to draw the tree using pydot and graphviz. If it is hard for
you to install these dependencies, you need to draw the diagram by hand. If you need draw the
diagram by hand, you may use the following function, added to the DecisionTree class for
visualization:

def __repr__(self):

if self.max_depth == 0:

return "%s (%s)" % (self.pred, self.labels.size)

else:

return "[%s < %s: %s | %s]" % (

self.features[self.split_idx], self.thresh,

self.left.__repr__(), self.right.__repr__())

(d) From this point forward, you are allowed to use sklearn.tree.* and the classes we have
imported for you below in the starter code snippets. You are NOT allowed to use other func-
tions from sklearn. Implement bagged trees as follows: for each tree up to n, sample with
replacement from the original training set until you have as many samples as the training set.
Fit a decision tree for each sampling. Include the code for your implementation of bagged
trees below. Here is some optional starter code:

import numpy as np

from sklearn.tree import DecisionTreeClassifier

from sklearn.base import BaseEstimator, ClassifierMixin

class BaggedTrees(BaseEstimator, ClassifierMixin):

def __init__(self, params=None, n=200):

if params is None:

params = {}

self.params = params

self.n = n

self.decision_trees = [

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 12



DecisionTreeClassifier(random_state=i,

**self.params) for i in

range(self.n)]

def fit(self, X, y):

# TODO implement function

pass

def predict(self, X):

# TODO implement function

pass

(e) Apply bagged trees to the Titanic and spam datasets. Find and state the most common
splits made at the root node of the different trees. For example:

(a) (“thanks”) < 4 (15 trees)
(b) (“nigeria”) ≥ 1 (5 trees)

Data format for Spam The preprocessed spam dataset given to you as part of the homework
in spam data.mat consists of 11,029 email messages, from which 32 features have been
extracted as follows:

• 25 features giving the frequency (count) of words in a given message which match the
following words: pain, private, bank, money, drug, spam, prescription, creative, height,
featured, differ, width, other, energy, business, message, volumes, revision, path, meter,
memo, planning, pleased, record, out.
• 7 features giving the frequency (count) of characters in the email that match the following

characters: ;, $, #, !, (, [, &.

The dataset consists of a training set size 5172 and a test set of size 5857.

(f) Implement random forests as follows: again, for each tree in the forest, sample with replace-
ment from the original training set until you have as many samples as the training set. Learn
a decision tree for each sample, this time using a randomly sampled subset of the features
(instead of the full set of features) to find the best split on the data. Let m denote the number of
features to subsample. Include the code for your implementation of random forests below.
Here is some optional starter code:

class RandomForest(BaggedTrees):

def __init__(self, params=None, n=200, m=1):

if params is None:

params = {}

# TODO implement function

pass

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 13



(g) Apply bagged random forests to the Titanic and spam datasets. Find and state the most
common splits made at the root node of the different trees.

(h) Summarize the performance evaluation of: a single decision tree, bagged trees, and ran-
dom forests. For each of the 2 datasets, report your training and validation accuracies. You
should use a 3-fold cross validation, i.e., splitting the dataset into 3 parts. You should be re-
porting 24 numbers (2 datasets × 3 classifiers × (3+ 1) for 3 cross validation accuracies (1 per
split) and 1 training accuracy (for the whole dataset)). Describe qualitatively which types of
trees and forests performed best. Detail any parameters that worked well for you. In addition,
for each of the 2 datasets, train your best model and submit your predictions on the test
data to Gradescope. Your best Titanic classifier should exceed 73% accuracy and your best
Spam classifier should exceed 76% accuracy for full points.

(i) You should submit

• your answers, plots, and code as part of your homework PDF write-up

• the following files, separately, as a part of your code submission: (a) a file containing all
of the implementations asked for above, (b) a file, named predictions titanic.csv,
of your Titanic test predictions, and (c) a file, named predictions spam.csv, of your
spam test predictions.

HW5,©UCB CS 189 / 289, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 14


	Exploring Bias Variance between Ridge and Least Squares Regression 
	Nearest Neighbors and Bayes Rrisk 
	Running Time of k-Nearest neighbor Search Methods 
	Decision Trees 
	Decision Trees and Random Forests 

