
CS 189/289
Today:
1. Residual Networks
2. Recurrent Neural Networks
3. Attention and Transformers

Attention and transformer slides are based on those 
from Prof. Levine’s CS 182, slides and lectures, here.



CS 189/289
Today:
1. Residual networks
2. Recurrent Neural Networks
3. Attention and Transformers



Recap from last lecture (CNNs)



Recap from last lecture (CNNs)



Recap from last lecture (CNNs)



Recap from last lecture (CNNs)



CNNs start winning vision competitions 2012

ImageNet Large scale visual recognition challenge (ILSVRC)
https://www.researchgate.net/figure/Performance‐of‐different‐approaches‐in‐ImageNet‐2015‐competition_fig2_309392322

Deeper 
seems better, 
why stop at 
22 layers?



“Vanishing gradient” problem

http://neuralnetworksanddeeplearning.com/chap5.html

Until 2015, not known how to use very deep models: gradient at 
lower levels (closest to input) would get smaller and smaller.

magnitude 
of gradient



Intuition for vanishing gradients from depth
The gradient is a 
product of numbers, 
where the # of terms 
scales with the
number of layers.

These large products 
tend to be unstable: 
vanishing (and 
exploding).



“Resnets” (Residual Networks) to the rescue
28.2

25.8

16.4

11.7

7.3 6.7

3.6 3 2.3
5.1

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Er
ro
r R

at
e

Lin et al Sanchez & 
Perronnin

Krizhevsky et 
al (AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

Shallow
8 

Layer 8 
Layer

19 
Layer

22 
Layer

152 
Layer

152 
Layer

152 
Layer

Separate idea 
from CNNs: can 
combine the 
ideas in one 
architecture.



Residual Networks (ResNets)
• ResNet goal: make it “easy” for layers to be set to the identity.
• Add previous layer inputs to current inputs (“skip connection”)

must be same dimension
• Can skip more than 

one layer.
• can have any 

architecture (e.g. CNN).
• is the identity 

mapping—layer has 
been skipped!

One residual layer:





http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec16.pdf

• Can string them together.
• Ability to “turn layers off”, making effectively 

shallower paths through the network.

Residual Networks (ResNets)

 For 110 layer network, most paths are only 55 layers deep.
 Gradient during training comes mostly from paths of length 10-34.



Activation functions saturating (problem amplified by depth)—
fixed with normalizations (e.g. “batch normalization”).

“Vanishing gradient” from saturating non-linearities

2. Add scale and shift parameters, :1. Normalize data in the mini-batch



How to handle arbitrary length inputs?

ALKELIKSANVIALIDMMEMIKSMEAPRR TCAGVLWYFHD

M
IK

S
M
E
A
P
R
R

stability 20∘𝐶

e.g. predict 
scalar property 
from protein 
sequence

stability 20∘𝐶 stability 42∘𝐶 stability 36∘𝐶



How to handle arbitrary length inputs and outputs?
e.g. language 
translation

How can we use variable input lengths?

Wie können wir variable Eingabelängen verwenden?

Neural networks only uses fixed length inputs

Neuronale Netze verwenden nur Eingaben fester Länge

Ho
w
 c
an

 w
e 
us
e 
va
ria

bl
e 

in
pu

t l
en
gt
hs
?

W
ie
 k
ön

ne
n 
w
ir 
va
ria

bl
e 

Ei
ng

ab
el
än

ge
n 
ve
rw

en
de
n?



How to handle arbitrary length inputs and outputs?
e.g. image 
captioning



How to handle arbitrary length inputs and outputs?
e.g. protein 
structure 
prediction

ALKELIKSANVIALIDMMEMIKSMEAPRR TCAGVLWYFHD

M
IK

S
M
E
A
P
R
R



Generally called sequence-to-sequence models.

Image: Andrej Karpathy

e.g., image captioning

e.g., activity recognition

e.g., machine translation

e.g., frame‐level video annotation



CS 189/289

Today:
1. Residual Networks
2. Recurrent Neural Networks
3. Attention and Transformers



anything 
preceding this 
doesn’t matter

First, consider only multiple inputs

Can we use one input 
variable per layer?

Obvious question: 
what happens to the 
missing layers?

Problem:
• #of 𝑊 increases with 

max sequence length!
• for small 𝑙 few samples 

to train with.
Fix: tie layer parameters:
• 𝑊 𝑊 (and 𝑏 𝑏
• Recurrent Neural Network

𝑎 is the running “memory” of the system



Variable # inputs and outputs

just like before

some kind of readout 
function, a “decoder”

each input gets its own output

A more general Recurrent Neural Network

𝑎 𝑎 𝑎 𝑎



An image-conditional model

<START> A cute puppy

A cute puppy <EOS>

RNN decoder
CNN encoder

vector encoding of 
the desired content 
of the sequence

𝑎 𝑎 𝑎 𝑎

This is an autoregressive generative model: we 
generate each new word, 𝑦 , , one at a time, having 
fed in the previous ones, 𝑦 , :



What if we condition on another sequence?

<START> A cute puppy

A cute puppy <EOS>

RNN decoderRNN encoder

vector encoding of 
the desired content 
of the sequence

<START> Un chiot mignon

𝑎 𝑎 𝑎 𝑎𝑎′ 𝑎′ 𝑎 𝑎

This is an autoregressive generative model: we 
generate each new word, 𝑦 , , one at a time, having 
fed in the previous ones, 𝑦 , :



Sequence to sequence models

<START> A cute puppy

A cute puppy <EOS>

RNN decoderRNN encoder

<START> Un chiot mignon

• Two separate RNNs: encoder & decoder
• Trained end-to-end on paired data (e.g., pairs of French & English sentences)
• Likelihood/cross-entropy loss, summing over each decoded word, in each sentence.

𝑎′ 𝑎′ 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎



RNN bottleneck problem

<START> A cute puppyUnchiotmignon

A cute puppy <EOS>

all information about the 
conditioned sequence is 
contained in these activations

Idea: what if we could somehow “peek” at the source 
sentence while decoding?
Attention to the rescue!

𝑎′ 𝑎′ 𝑎 𝑎 𝑎 𝑎 𝑎

How can we do this?



CS 189/289

Today:
1. Residual Networks
2. Recurrent Neural Networks
3. Attention and Transformers



Attention overview

<START> A cute puppyUnchiotmignon

How can we do this?

some function
(e.g., linear layer + ReLU)

key vector query vector

compare query to each key to find 
the closest one to get the right value

Intuition: key might 
encode “the subject 
of the sentence,” 
and query might ask 
for “the subject of 
the sentence”.

Keys and queries 
are learned.



Attention details

<START> A cute puppyUnchiotmignon

How can we do this?

not differentiable!

(i.e., append a to the input)

attention score for encoder input 𝑡 to decoder step 𝑙

If stacking these layers, then 
“send” output to concatenate 
with input of next layer

𝑦



Attention Walkthrough (Example)

<START> A cute puppyUnchiotmignon



Attention Walkthrough (Example)

<START> A cute puppyUnchiotmignon



Attention Walkthrough (Example)

<START> A cute puppyUnchiotmignon



Attention Variants

<START> A cute puppyUnchiotmignon



Attention Variants

just learn this matrix

<START> A cute puppyUnchiotmignon

some learned function



Attention is very powerful

All decoder steps are 
connected to all encoder steps!
Connections can skip directly 

ahead to where needed.
Thus gradients can be much 

better behaved than RNN 
without attention.

Is attention all we need?



CS 189/289

Today:
1. Residual Networks
2. Recurrent Neural Networks
3. Attention and Transformers



Is Attention All We Need?

This has a few issues we must overcome:
• Decoding position 3 can’t access or .
• Solution: self-attention.

• If we have attention, do we even 
need recurrent connections?

• Can we transform our RNN into a 
purely attention-based model?



Self-Attention (one layer)

shared weights at all time steps

we’ll see why this is important soon



Self-Attention

self‐attention “layer”

self‐attention “layer”

keep repeating until we’ve 
processed this enough

then hand off to next part of overall 
model



From Self-Attention to Transformers
• Self-attention lets us remove recurrence entirely, yielding the now 

pervasively used Transformer model for sequences.
• But we need a few additional components to fix some problems:

1. Positional encoding
2. Multi-headed attention
3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one
how to prevent attention lookups into the future?



Positional encoding: what is the order?
what we see:

he hit me with a pie

what naïve self‐attention sees:
he

hit me
pie

with
a

a pie hit me with he
a hit with me he pie

he pie me with a hit

most alternative orderings are nonsense, but some change the meaning

in general the position of words in a sentence carries information!

Idea: add some information to the representation at the 
beginning that indicates where it is in the sequence!

some function

Permutation Equivariant!



Positional encoding: what is the order?

some function

𝑑, is the dimensionality of 
positional encoding



From Self-Attention to Transformers
• The basic concept of self-attention can be used to develop a very 

powerful type of sequence model, called a transformer
• But to make this actually work, we need to develop a few additional 

components to address some fundamental limitations

1. Positional encoding
2. Multi-headed attention
3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one
how to prevent attention lookups into the future?



Multi-head attention
Idea: have multiple keys, queries, and values for every time step!

around 8 heads seems to work 
pretty well for big models



From Self-Attention to Transformers
• The basic concept of self-attention can be used to develop a very 

powerful type of sequence model, called a transformer
• But to make this actually work, we need to develop a few additional 

components to address some fundamental limitations

1. Positional encoding
2. Multi-headed attention
3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one
how to prevent attention lookups into the future?



Self‐Attention is Linear

Every self-attention “layer” is a linear 
transformation of the previous layer



Alternating self-attention & non-linearity

self‐attention “layer”

self‐attention “layer”

just a neural net applied at every 
position after every self-attention layer



From Self-Attention to Transformers
• The basic concept of self-attention can be used to develop a very 

powerful type of sequence model, called a transformer
• But to make this actually work, we need to develop a few additional 

components to address some fundamental limitations

1. Positional encoding
2. Multi-headed attention
3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one
how to prevent attention lookups into the future?



Self-attention can see the future!

self-attention “layer”

e.g. self-attention “language model”:

Problem: 
• Step 1 can look at future values (hence inputs).
• At test time (“decoding”), the output at step 1 

will see the input at step 2 …
• Also cyclic: output 1 depends on input 2 which 

depends on output 1. 
• So it can see itself, thereby “cheating”.

Solution: 



Now we are read for
The Transformer!



Sequence-to-sequence with self-attention

self-attention “layer”

self-attention “layer”

“Transformer” architecture: 
• Stacked self-attention layers with 

position-wise nonlinearities.
• Transform one sequence into 

another at each layer.
• For sequence data.

[Vaswani et al. Attention Is All You Need. 2017]



Encoder-Decoder Transformer

self‐attention “layer”

position‐wise encoder

position‐wise nonlinear 
network

re
pe

at
ed

 N
tim

es

masked self‐attention

position‐wise encoder

position‐wise nonlinear 
network

cross attention

position‐wise nonlinear 
network

re
pe

at
ed

 N
tim

es

Cross-Attention

position‐wise softmax

RNN

Transformer

Encoder Decoder

Similar to the standard (non-self) attention 
from the previous lecture



One last detail: layer normalization
Main idea: batch normalization is hard to use with sequence models:
• Sequences are different lengths.
• Sequences can be very long, so we sometimes have small batches.

Simple solution: “layer normalization” – one sample across whole layer

Batch norm



One last detail: layer normalization

Batch norm Layer norm

The multi-headed attention vectors for one position in 
a layer are stacked together to form vector 𝑎 before 
performing the operations below for the entire layer. 

So below, 𝑎 ∈ ℝ where d 𝐾 𝑅 for 𝐾 attention 
heads, and 𝑥 ∈ ℝ . This is done position-by-position.

𝑗 1 𝑗 1

𝑎
𝑎 𝑢
𝜎 𝛾 𝛽



Putting it all together
The Transformer

Vaswani et al. Attention Is All You Need. 2017.

concatenates attention from all heads

essentially a residual connection with LN

2-layer neural net at each position

6 layers, each with d = 512

Decoder decodes one position at a 
time with masked attention

residual connection with LN

residual connection with LN

residual connection with LN

multi-head cross attention

masked



Transformers pros and cons
Downsides:
- Attention computations are technically O(n2)
- Somewhat more complex to implement (positional encodings, etc.)

Benefits:
+ Much better long-range connections
+ Much easier to parallelize
+ In practice, can make it much deeper (more layers) than RNN

• Benefits often vastly outweigh the downsides.
• Transformers work much better than RNNs (and LSTMs) in many cases
• One of the most important sequence modeling improvements of the 

past decade.




