CS 189/289
Today's lecture outline

1. Finish PCA.
2. Non-linear dimensionality reduction (t-SNE)

Recall: PCA

- Goal: find $k<d$ dimensions w most of the "information" in the original data, $X \in \mathbb{R}^{n \times d}$.
- Directions accounting for most variance and yielding lowest $\left\|X_{\text {recon-k }}-X\right\|_{F}$.

5K original faces, $x_{j} \in \mathbb{R}^{1024}$

1024 PCA basis vectors, $u_{i} \in \mathbb{R}^{1024}$
(from $X^{T} X=U D U^{T}$)

Reconstruction, $X_{\text {recon-k }}=X U_{k} U_{k}^{T}$

Linear algebra for PCA

$\bar{X} \in \mathbb{R}^{n \times d}$

- Need to compute the principal axes, Q, of $\bar{X}^{T} \bar{X}=Q D Q^{T} \in \mathbb{R}^{d \times d}$.
- This is an eigendecomposition of the matrix $\bar{X}^{T} \bar{X}$.
- Computing its eigendecomposition has time complexity $O\left(d^{3}\right)$.
- What if $d \gg n$? e.g., images of $\mathrm{d}=100 \times 100=10^{4}$ pixels, and $n=1,000$ images.
- Could we do something cheaper?
- Yes. Need to understand the SVD.

$10^{4} \mathrm{dim}$ vector

Linear algebra for PCA
Recall the spectral theorem from MVG lecture, which gives a spectral (eigen) decomposition::

- The covariance matrix for PCA, $\bar{X}^{T} \bar{X}$, is symmetric (and PSD).
- It turns out, there is a generalization of the spectral decomposition, for non-symmetric and non-square matrices, the SVD that will be helpful.

Singular Value Decomposition (SVD)

Can think of M as linear transformation broken down into three steps, by looking at its effect on the unit disc and the two canonical unit vectors e_{1} and e_{2} :

1. Left: $\boldsymbol{V}^{\boldsymbol{T}}$ rotates the disc and unit vectors.
2. Bottom: $\boldsymbol{\Sigma}$ stretches scales axes by $\sigma_{i}=\Sigma_{i, i}$ (singular values).
3. Right: U performs another rotation.

Can be applied to any matrix M.

$$
M=U \cdot \Sigma \cdot V^{*}
$$

Singular Value Decomposition (SVD)

- Columns in U are the eigenvectors of $M M^{T}$, called the left singular vectors of M

$$
\left(M M^{T}=U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma^{2} U^{T}\right)
$$

- Columns in V are the eigenvectors of $M^{T} M$, called the right singular vectors of M $\left(M^{T} M=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}\right)$.
- Both spectral decompositions at once!
- Eigenvalues are the same, given by $\lambda_{i}=\Sigma_{i, i}^{2}$ ($\Sigma_{\mathrm{i}}, \mathrm{i}$ are the singular values of M):
$>$ Since v_{i} is an eigenvector for $M^{T} M$, it follows that $M^{T} M v_{i}=\lambda_{i} v_{i}$. It follows that...
$>\ldots .\left(M M^{T}\right) M v_{i}=\lambda_{i}\left(M v_{i}\right)$ thus $M v_{i}$ is an eigenvector for $M M^{T}$ with eigenvalue λ_{i} !

Can be applied to any matrix M.

Singular Value Decomposition (SVD)

$X \in \mathbb{R}^{n \times d}$

- Recall this example with $d \gg n$,e.g. $d=10^{4}$ pixels, $n=1000$ images.
- How can we make use of what we just learned to do PCA faster than the eigendecomposition $O\left(d^{3}\right)$?
- Instead of spectral decomposition of $X^{T} X$...
- ...directly use SVD of the data matrix: $S V D(X)=U \Sigma V^{T}$
- Because columns in V are the eigenvectors of $X^{T} X$.
- $\lambda_{i}=\Sigma_{i, i}^{2}$ are needed eigenvalues.

- SVD has time complexity $O\left(d n^{2}\right)$.

Singular Value Decomposition (SVD)

For PCA we want projections onto top k PCs.

- When we used a spectral decomposition, $X^{T} X=Q D Q^{T}$, we compute: $X_{k}=X Q_{k} \in \mathbb{R}^{n \times k}\left(Q\right.$ are eigvecs of $\left.X^{T} X\right)$.
- When using the SVD of X, we can instead get this from:
- $X_{k}=X V_{:, 1: k}=U_{i, 1: k} \Sigma_{1: k, 1: k} \in \mathbb{R}^{n \times k}$ ("scores" in PCA basis). $\quad X v_{i}=\sigma_{i} u_{i}$
- We don't need to compute covariance matrix, or do the projections, we just need $\operatorname{SVD}(X)$!

"Eckart Young theorem" 1936

- The SVD "k-reconstruction" produces the best k-rank approximation by the matrix norm, $\left\|X-X_{\text {recon-k }}\right\|_{F}$.
- First proven by Schmidt (of Gram-Schmidt fame) in 1907 for Froebenius norm.
- Later rediscovered by Eckart \& Young 1936, also generalized to other norms..
- Thus, PCA provides the best low rank approximation to the data matrix.

$$
\|\mathbf{A}\|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}
$$

Practicalities: Reduced SVDs

For PCA and other applications, don't need the entire SVD, and can make do with "trimmed down" versions:

1. Full SVD
2. Thin SVD (remove columns of U not corresponding to rows of V *)
3. Compact SVD (remove vanishing singular values and corresponding columns/rows in U and V *),
4. Truncated SVD (keep only largest t singular values and corresponding columns/rows in U and V^{*})

PCA is not linear regression

PCA from neural networks!

- Special kind of neural network: an autoencoder.
- Learned parameters with MLE recovers the same subspace as PC-k (one layer, all linear, k nodes).
- Can generalize by making non-linear
 transfers, and more layers, etc.

Can we do PCA if don't have X explicitly?

- Suppose you're given pairwise distances between n cities, $M \in \mathbb{R}^{n \times n}$, and asked you to find a 2D representation?
- Think of $M=X X^{T} \in \mathbb{R}^{n \times n}$ for some unobserved X (instead of $X^{T} X$).
- Now new basis is in U from: $M=U S V^{T}$.
- We just performed Multidimensional Scaling (MDS):
- Implicitly assumes some latent space X of unknown dimension for which the distance is an inner product distance, $\mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{x}\right)=x^{\prime} x^{T}$.
- Could be non-linear distance function of actual x (e.g., if latent space had a polynomial expansion).
- Result $(k=2)$:

- Want to recover locations

CS 189/289

Today's lecture outline

1. Finish PCA.
2. Non-linear dimensionality reduction (t-SNE)

Recall the "swiss roll" type of data from last class

What would happen if we applied PCA with two dimensions to these data?

Ambient dimension=3 Manifold dimensions=2

Hint: PCA is a linear transformation, $X_{k}{ }^{\prime}=X U_{k}$

Recall the "swiss roll" type of data from last class

PCA projection

- This is not what we want!
- These data require a non-linear mapping.

PCA vs non-linear embedding on MNIST

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	9	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

Neighborhood embeddings

Explicitly try to find a low dimensional embedding that is good at preserving neighborhoods of original points in ambient space.

1. NE: neighbor embedding (e.g. IsoMap Tenenbaum et al 2000)
2. SNE: stochastic NE (Hinton \& Roweis 2002)
3. t-SNE: t-distributed SNE (Van der Maaten \& Hinton 2008)

Neighborhood Embedding (NE) aka Isomap

Step 1: For each point, find its nearest neighbors, and build a road ("edge") between them
(e.g., find closest 2 neighbors per point and add edges to them)
Step 2: Compute
shortest distance from
each point to every other
allowed to travel on the
roads

Step 3: Given this set of pairwise distances, put them in a matrix, M, and perform MDS.

Example of Isomap

In orange: road lengths
2 nearest neighbors of A : B, C

2 nearest neighbors of B : A, C
2 nearest neighbors of C : B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of $\mathrm{E}: \mathrm{C}, \mathrm{D}$
Build "symmetric 2-NN" graph (add edges for each point to

	A	B	C	D	E
A	0	5	8	13	16
B	5	0	5	10	13
C	8	5	0	5	8
D	13	10	5	0	5
E	16	13	8	5	0

M matrix in

IsoMap on Swiss Roll type example

PCA projection

IsoMap projection

Comments on Isomap

Ask for nearest neighbors to be really close by
There might not be enough edges

The quality of the result critically depends on the nearest neighbor graph

Allow for nearest neighbors to be farther away
Might connect points that shouldn't be connected

From NE to stochastic NE (SNE)

- Make the event of two samples being neighbors a random variable:
- The probability that x_{i} "chooses" $x_{j_{2}}$ as its neighbor $\left(x \in \mathbb{R}^{d}\right)$ is given by $\quad P_{j \leftarrow i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)^{\prime}}$ and $P_{j \leftarrow j}=0$
- Smells like a Gaussian, but normalized so that $1=\sum_{j} P_{j \leftarrow i}$.
- Symmetrize \& normalize, $P_{i j}=P_{j i}=\frac{1}{2 n}\left(P_{j \leftarrow i}+P_{i \leftarrow j}\right)$ which can be interpreted as probability to pick this pair out of all pairs of points.
- Set σ_{i}^{2} adaptively such that entropy of $P_{: \leftarrow i}$ is constant, $\sum_{j \neq i} P_{j \leftarrow i} \log P_{j \leftarrow i}$.

From NE to stochastic NE (SNE)

- From original data, $X \in \mathbb{R}^{n \times d}$, we have defined stochastic neighborhoods with probability distribution, $P=\left\{P_{i j}\right\}$.
- Now posit low-dimensional representations, $Y \in \mathbb{R}^{n \times k}$, and define stochastic neighborhoods for them, $Q=\left\{Q_{i j}\right\}$,
- $Q_{j i}=\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{l \neq k} \exp \left(-\left\|y_{l}-y_{k}\right\|^{2}\right)}$ (setting $\left.\sigma^{2}=\frac{1}{2}\right)$
- Goal: find Y such that stochastic neighborhood structures are preserved ($Q \approx P$).
- Solution: minimize the KL-divergence between P and Q :

$$
\hat{Y}=\underset{Y}{\operatorname{argmin}} K L(P \| Q)=\sum_{i, j} P_{i j} \log \frac{P_{i j}}{Q_{i j}} .
$$

Aside: Kullback-Leibler (KL) Divergence

- Also called Relative Entropy.
- Measures how much one distribution diverges from another.
- For discrete probability distributions, P and Q, it is defined as:

$$
D_{K L}(P \| Q)=\sum_{x} P(x) \ln \frac{P(x)}{Q(x)}
$$

- Not a true distance metric because not symmetric in P and Q :

$$
D_{K L}(P \| Q) \neq D_{K L}(Q \| P)
$$

Properties of KL Divergence

- $\mathrm{KL}(p \| q) \geq 0$
- $\mathrm{KL}(p \| q)=0$ if and only if $p=q$

Aside: Kullback-Leibler (KL) Divergence

$$
\begin{aligned}
D_{K L}(P \| Q) & =\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \\
& =E_{P(x)}\left[\log \frac{1}{Q(X)}\right]-E_{P(x)}\left[\log \frac{1}{P(X)}\right]
\end{aligned}
$$

Aside: Kullback-Leibler (KL) Divergence

$$
\begin{aligned}
D_{K L}(P \| Q) & =\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \\
& =E_{P(x)}\left[\log \frac{1}{Q(X)}\right]-E_{P(x)}\left[\log \frac{1}{P(X)}\right] \\
& =\underbrace{}_{\text {cross-entropy }}=H(P, Q)-\underbrace{H(P)}_{\text {entropy }}
\end{aligned}
$$

- Consider data, D where $x_{\mathrm{i}} \sim \hat{p}_{d a t a}$ and a model with params $\theta, p(x \mid \theta)$.
- If minimizing the KL divergence (instead of MLE),
$\left.\left.\operatorname{argmin}_{\theta} D_{K L}\left(\hat{p}_{\text {data }} \| p(x \mid \theta)\right)=\right)\right)=$

Aside: Kullback-Leibler (KL) Divergence

$$
\begin{aligned}
D_{K L}(P \| Q) & =\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \\
& =E_{P(x)}\left[\log \frac{1}{Q(X)}\right]-E_{P(x)}\left[\log \frac{1}{P(X)}\right] \\
& =H(P, Q)-\underbrace{H(P)}_{\text {Cross-entropy }} \text { entropy }
\end{aligned}
$$

- Consider data, D where $x_{\mathrm{i}} \sim \hat{p}_{\text {data }}$ and a model with params $\theta \backslash p(x \mid \theta)$.
- If minimizing the KL divergence (instead of likelihood for MLE),
$\left.\left.\operatorname{argmin}_{\theta} D_{K L}\left(\hat{p}_{\text {data }} \| p(x \mid \theta)\right)=\right)\right)=\operatorname{argmin}_{\theta} H\left(\hat{p}_{\text {data }}, p(x \mid \theta)\right)+H\left(\hat{p}_{\text {data }}\right)$

Aside: Kullback-Leibler (KL) Divergence

$$
\begin{aligned}
D_{K L}(P \| Q) & =\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \\
& =E_{P(x)}\left[\log \frac{1}{Q(X)}\right]-E_{P(x)}\left[\log \frac{1}{P(X)}\right] \\
& =H(P, Q)-\underbrace{H(P)}_{\text {cross-entropy }}
\end{aligned}
$$

- Consider data, D where $x_{\mathrm{i}} \sim \hat{p}_{\text {data }}$ and a model with paramo $\beta \theta, p(x \mid \theta)$.
- If minimizing the KL divergence (instead of MLE),
$\left.\left.\operatorname{argmin}_{\theta} D_{K L}\left(\hat{p}_{\text {data }} \| p(x \mid \theta)\right)=\right)\right)=\operatorname{argmin}_{\theta} H\left(\hat{p}_{\text {data }}, p(x \mid \theta)\right)+H\left(\hat{p}_{\text {data }}\right)$

$$
=\operatorname{argmax} E_{\hat{p}_{\text {data }}}[\log p(x \mid \theta)]=\operatorname{argmax} \sum_{i}^{N} \log p\left(x_{i} \mid \theta\right) .
$$

From NE to stochastic NE (SNE)

- From original data, $X \in \mathbb{R}^{n \times d}$, we have defined stochastic neighborhoods with probability distribution, $P=\left\{P_{i j}\right\}$.
- Now posit low-dimensional representations, $Y \in \mathbb{R}^{n \times k}$, and define stochastic neighborhoods for them, $Q=\left\{Q_{i j}\right\}$,
- $Q_{j i}=\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{l \neq k} \exp \left(-\left\|y_{l}-y_{k}\right\|^{2}\right)}\left(\right.$ setting $\left.\sigma^{2}=\frac{1}{2}\right)$
- Goal: find Y such that stochastic neighborhood structures are preserved ($Q \approx P$).
- Solution: minimize the KL-divergence between P and Q :
- $\hat{Y}=\underset{Y}{\operatorname{argmin}} K L(P \| Q)=\sum_{i, j} P_{i j} \log \frac{P_{i j}}{Q_{i j}}$.

SNE: miminizing the loss function

$$
\hat{Y}=\underset{Y}{\operatorname{argmin}} K L(P \| Q)=\sum_{i, j} P_{i j} \log \frac{P_{i j}}{Q_{i j}} .
$$

- Use gradient descent to find embedded points, $\left\{y_{i}\right\}$
- Can show that $\frac{\partial L o s s}{\partial y_{i}}=\sum_{j}\left(P_{i j}-Q_{i j}\right)\left(y_{i}-y_{j}\right)$.
- Not a convex optimization problem, so there are many local minima.

Problem with SNE

When we try to maintain the same neighborhood probabilities between the low and high dimensional spaces, we end up "crowding" the points in the lower dimensional space.

Pairwise distances between points in a standard Gaussian:

Fixing SNE with t-SNE

- Change the distribution in the embedding space, $Q_{i j}$ to have a heavier-tailed distribution, a t-distribution.
- t-SNE uses $Q_{j \leftarrow i}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{i \neq k}\left(1+\left\|y_{j}-y_{k}\right\|^{2}\right)^{-1}}$
- Everything else remains the same as in SNE.

$$
\text { for } v=1 \text { we get } p(x) \propto \frac{1}{1+x^{2}}
$$

```
Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.
    Data: data set \(\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\),
    cost function parameters: entropy constant, C to set \(\sigma_{i j}\)
    optimization parameters: number of iterations \(T\), learning rate \(\eta\)
    Result: low-dimensional data representation \(\mathcal{Y}^{(T)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\).
    begin
        compute pairwise affinities \(p_{j \mid i}\) with entropy constant, C to set \(\sigma_{i j}\)
        set \(p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 n}\)
        sample initial solution \(\mathcal{Y}^{(0)}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\) from \(\mathcal{N}\left(0,10^{-4} I\right)\)
        for \(t=1\) to \(T\) do
            compute low-dimensional affinities \(q_{i j}\) (using Equation 4)
            compute gradient \(\frac{\delta C}{\delta y}\) (using Equation 5)
            set \(\mathcal{Y}^{(t)}=\mathcal{Y}^{(t-1)}+\eta \frac{\delta C}{\delta Y}\)
        end
    end
```


t-SNE on MNIST

(each color labels one of the 10 digits)

Single-cell transcriptomics (single-cell RNA sequencing): samples are cells, features are genes.

- Astroependymal cells
- Cerebellum neurons

Cholinergic, monoaminergic, peptidergic

- Di- and mesencephalon neurons
- Enteric neurons
- Hindbrain neurons
- Immature neural
- Immune cells
- Neural crest-like glia
- Oligodendrocytes
- Peripheral sensory neurons
- Spinal cord neurons
- Sympathetic neurons
- Telencephalon interneurons

Telencephalon projecting neurons

- Vascular cells

Zeisel et al. (2018)

$$
n \approx 500,000
$$

Digital humanities: samples are books, features are words.

Dmitry Kobak | Machine Learning I | Manifold learning and t-SNE

Some pros and cons: PCA vs t-SNE

PCA-captures global structure via shared PC axes.

- No issues with local minima / sub-optimal solutions---SVD gives minimal.
- Projection axes can be examined for interpretability.
- Can be computed efficiently (SVD)
- Can embed new points without updating the embedding space.
- Limited to capturing linear structures (but can be generalized using augmented feature space/kernels).
t-SNE—captures local structure by preserving neighborhoods
- Can model non-linear manifolds.
- Thus can preserve richer local structures (e.g. think swiss roll).
- Expensive to compute, but there are tricks to speed it up.
- Subject to local minima during optimization.
- No explicit projection mapping, so:
- less potential for interpretability
- cannot be applied to new points (no explicit mapping given).---must re-run it.

