CS 189/289

Today'’s lecture outline

1. Finish PCA.
2. Non-linear dimensionality reduction (t-SNE)




Recall: PCA

e Goal: find k < d dimensions w most of the “information” in the
original data, X € R™*¢.
 Directions accounting for most variance and yielding lowest
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1024 PCA basis vectors, u; € R102%
5K original faces, x; € R'%*  (from xTX = UpUT) RECONSLUCHION, Xocon—ic = XUy UT
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X = ]RnXd

Linear algebra for PCA

» Need to compute the principal axes, Q, of XTX = QDQT € R%*4.

e This is an eigendecomposition of the matrix XTX.

« Computing its eigendecomposition has time complexity 0(d?).

« Whatifd >» n?e.gq., images of d = 100 x 100 = 10* pixels, and
n = 1,000 images.

» (Could we do something cheaper?

 VYes. Need to understand the SVD. loo
2 /1 10Ydim wapoy
| oo




Linear algebra for PCA

Recall the spectral theorem from MVG lecture, which gives a
spectral (eigen) decomposition:.

e The covariance matrix

When A is symmelvic T
" G‘)DQT With real @igenvalues v D
\ avdl orinovioyma et in S=Q

for PCA, XTX, is
symmetric (and PSD).
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Singular Value Decomposition (SVD)

Can think of M as linear transformation broken Can be applied to any matrix M.
down into three steps, by looking at its effect on the

1.
2.

3.

and the two canonical unit vectors

Left: VTrotates the disc and unit vectors.

Bottom: X stretches scales axes by o; =

(singular values).
Right: U performs another rotation.
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Has time complexity O(m?*n + mn?).

X (s unique (if in descending order), but V- and U are
generally not: e.q. sign flips.

(Eigendecomposition is unique If all eigenvalues are unigue)

If M is square+symmetric, yields the spectral decomposition.



Singular Value Decomposition (SVD)

» Columns in U are the eigenvectors of MMT,  Can be applied to any matrix M.
called the left singular vectors of M
MMT = UsVTVETUT = uz2uT) ‘ ‘ ‘ ‘ ‘ |

 Columns in V are the eigenvectors of MT M, s VvV
called the right singular vectors of M ”’“ mxm mxn nxn
M™M =VETUTUsVT = v32yT) ‘ ‘

1

* Both spectral decompositions at once! u U =1,
» Eigenvalues are the same, given by ; = £7; ‘ l ‘ T ﬂ
(Z;,1 are the singular values of M): v Vi = |,

> Since v; is an eigenvector for MM, it follows
that MTMv; = A;v;. It follows that...

>(MMT)MUL = )]'i(Mvi) thus MUi IS an
eigenvector for MMT with eigenvalue A;!



X € Rnxd
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Singular Value Decomposition (SVD)

 Recall this example with d > n ,e.g. d = 10* pixels, n = 1000 images.

« How can we make use of what we just learned to do PCA faster than the
eigendecomposition 0(d?)?

* Instead of spectral decomposition of X7 X ...

e _.directly use SVD of the data matrix: SVD(X) = UXVT |

 Because columns in V are the eigenvectors of XTX. . ‘u| P;L -

M=M MmM=xN NxnN

+ ) = Xf; are needed eigenvalues.
 SVD has time complexity 0(dn?).



Singular Value Decomposition (SVD) ‘M =U|P}w

m=n mxm mxn nxn

For PCA we want projections onto top k PCs.

« When we used a spectral decomposition, X*X = QDQT, we
compute: X, = X0, € R™* (Q are eigvecs of XTX).

« When using the SVD of X, we can instead get this from:
* X =XV1g = U 1421110 € R™¥ ("scores” in PCA basis).  Xv; = o;u;

« We don't need to compute covariance matrix, or do the
projections, we just need SVD(X)!




"Eckart Young theorem” 1936

* The SVD "k-reconstruction” produces the best k-rank
approximation by the matrix norm, [|X — Xyecon—xll£-

» First proven by Schmidt (of Gram-Schmidt fame) in 1907 for
-roebenius norm.

* Later rediscovered by Eckart & Young 1936, also generalized to
other norms..

 Thus, PCA provides the best low rank approximation to the data
matrix.

IAIlF = \/ Zi‘au“z
i=1 j=1



Practicalities: Reduced SVDs |

For PCA and other applications, don't need the entire
SVD, and can make do with “trimmed down” versions:

1.
2.

2

Full SVD

Thin SVD (remove columns of U not
corresponding to rows of V*)

5

Compact SVD (remove vanishing singular values
and corresponding columns/rows in U and V%),

Truncated SVD (keep only largest t singular values LI
and corresponding columns/rows in U and V*)
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PCA is not linear regression

y < T2
A

X —>y

\“ '11,..., Y

Andrew Ng



PCA from neural networks!

* Special kind of neural network: an
autoencoder.

* Learned parameters with MLE recovers the
same subspace as PC-k (one layer, all linear, k
nodes).

 Can generalize by making non-linear
transfers, and more layers, etc.



Can we do PCA it don't have X explicitly?

Suppose you're given pairwise distances between n
cities, M € R™™", and asked you to find a 2D
representation?

Think of M = XX' € R™"™ for some unobserved X
(instead of XTX).

Now new basis is in U from: M = USVT.

We just pertormed Multidimensional Scaling (MDS):
Implicitly assumes some latent space X of unknown
dimension for which the distance is an inner product
distance, d(x’,x) = x'x".

Could be non-linear distance function of actual x (e.g.,
T latent space had a polynomial expansion).

* Example: given pairwise distances between cities

Atl Chi_ |Den [Hou |LA Mia [NYC |SF Sea [DC
Atlanta 0
Chicago | 587 0
Denver 1212] 920 0
Houston | 701| 940| 879 0
LA 1936| 1745| 831| 1374 0
Miami 604 1188| 1726| 968| 2339 0
NYC 748| 713| 1631| 1420| 2451| 1092 0
SF 2139| 1858| 949| 1645 347| 2594| 2571 0
Seattle | 2182 1737| 1021| 1891 959| 2734| 2406| 678 0
DC 543| 597| 1494| 1220| 2300| 923| 205[ 2442| 2329 0

— Want to recover locations

[Pellacini et al.]

* Result (k = 2):

™
Seattle NYC
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Today'’s lecture outline

2. Non-linear dimensionality reduction (t-SNE)



Recall the “swiss roll” type of data from last class

What would happen it we applied PCA
with two dimensions to these data?

Ambient dimension=3
Manifold dimensions=2

Hint: PCA is a linear transtformation,
Xk, — XUk



Recall the “swiss roll” type of data from last class

PCA projection

j.-#:. "; k.

Fiioe >

 This is not what we want!
» These data require a non-linear mapping.



PCA vs non-linear embedding on MNIST

non-linear
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Neighborhood embeddings

Explicitly try to find a low dimensional embedding that is good at
preserving neighborhoods of original points in ambient space.

1. NE: neighbor embedding (e.q. IsoMap Tenenbaum et al 2000 )
2. SNE: stochastic NE (Hinton & Roweis 2002)
3. t-SNE: t-distributed SNE (Van der Maaten & Hinton 2008)




Neighborhood Embedding (NE) aka lsomap

Step 1: For each point, find
its nearest neighbors, and o
build a road (“edge”)
between them

Step 2: Compute
shortest distance from
each point to every other
point where you’re only
allowed to travel on the
roads

Step 3: Given this set of pairwise distances,
out them in a matrix, M, and perform MDS.



Example of Isomap

In orange: road lengths

Shortest distances between
every point to every other
point where we are only
allowed to travel along the

roads

/-P

2 nearest neighbors of A:
2 nearest neighbors of B:
2 nearest neighbors of C:
2 nearest neighbors of D:

2 nearest neighbors of E:

Build "symmetric 2-NN" graph

(add edges for each point to
its 2 nearest neighbors)




IsoMap on Swiss Roll type example

IsoMap projection




Comments on Isomap

[ =

&

The quality of the result
critically depends on the
nearest neighbor graph

Ask for nearest neighbors to
be really close by

There might not be enough
edges

Allow for nearest neighbors
to be farther away

Might connect points that
shouldn’t be connected



From NE to stochastic NE (SNE)

« Make the event of two samples being neighbors a random * e .
variable: ) _ .
* The probability that x; “‘chooses” x; as its neighbor (x € RY) is 4 ﬁff '
. _ el lre) A
e e L e A A L :
* Smells like a Gaussian, but normalized so that 1 = ; Pj;. * % e

* Symmetrize & normalize, P;; = Pj; = % (Pji+Pij) which can be

interpreted as probability to pick this pair out of all pairs of points.
- Set g/ adaptively such that entropy of P._; is
constant, 2, ; Pi—ilog Pj;.




exp (—||xl- — xj||2/20i2)

From NE to stochastic NE (SNE) 7 " Zeiew(n=d/20)

* From original data, X € R™4, we have defined stochastic
neighborhoods with probability distribution, P = {P;;}.

« Now posit low-dimensional representations, ¥ € R™ ¥, and
define stochastic neighborhoods for them, Q@ = {Q;;},

2
~__exp(-vi-vl)
Jt Zl-‘/—'k xp(—=lyi=ykll?)

(setting o2 = %)

« Goal: find Y such that stochastic neighborhood structures are
preserved (Q = P).

* Solution: minimize the KL-divergence between P and Q:

Pij

¥ = argmin KL(P||Q) = Y, ; P;j log =~
Y / Qij




Aside: Kullback-Leibler (KL) Divergence

 Also called Relative Entropy.
* Measures how much one distribution diverges from another.
« For discrete probability distributions, P and Q, it is defined as:

P(x)
@ LPOIN G

» Not a true distanCe-metric because not symmetric in P and Q:

D1 (P||Q) # Dk1(Q||P) \ J

Properties of KL Divergence
» KL(pllg) > 0




Aside: Kullback-Leibler (KL) Divergence

Dk, (P||Q) = EP(X)ZOQ QExi

= Ep(x) [log Q(X)] — Ep(o [lOgP(X)



Aside: Kullback-Leibler (KL) Divergence

Dg1(P]1Q) = zP(X)IOQ QExi

1
= Ep(y) |log Q(X)] — Ep(o [logP(X)
=H(P,Q)—H(P)

’\/'v\ .
C;\S}-/er-\"wf’; gr\{v 6'3.

« (Consider data, D where xj~P g4t aNd a model with params 8, p(x|8).
 |f minimizing the KL divergence (instead of MLE),

argming D, (PaatallP(x]0)) =)) =



Aside: Kullback-Leibler (KL) Divergence

Dg1(P]1Q) = zP(X)IOQ QExi (& W
D KP’%

= Ep(y) |log Q(X)] — Ep(o [logP(X)
=H(P,Q)—H(P)

’\/'v\ .
CM"MP; Qr\*\f g?'

« (Consider data, D where xj~P g4t aNd a model with params 8, p(x|8).
* |f minimizing the KL divergence (instead of likelihood for MLE),

argming D, (Paatallp(x10)) =)) = argming H(Paata p(x|6))

_ argmaX@()g pﬁ@ﬂxc/‘%‘?iwwﬁ




Aside: Kullback-Leibler (KL) Divergence

Dg1(P]1Q) = zP(X)IOQ QExi

1
= Ep(x) |log Q(X)] — Ep(x) [109 PO MLE @V»MWL

=H(P,Q)—H(P)

’\/'v\ .
C;\S}-/er-\"wf’; e*\{\f g?'

« (Consider data, D where xj~P g4t aNd a model with paramg 8, p(x|8).
 |f minimizing the KL divergence (instead of MLE),

argming D, (Paatallp(x10)) =)) = argming H(Paata p(x19)) + H(Daata)

= argmaxk,, a[logp(x|9@ax >N logp(x;




exp (—||xl- — xj||2/20i2)

From NE to stochastic NE (SNE) 0 el — x P/ 207)

* From original data, X € R™4, we have defined stochastic
neighborhoods with probability distribution, P = {P;;}.

« Now posit low-dimensional representations, ¥ € R™ ¥, and
define stochastic neighborhoods for them, Q@ = {Q;;},

2
.0, = exp(=[lyi=v)l)
b Y exp(=lyi—yrll?)

(setting o2 = %)

« Goal: find Y such that stochastic neighborhood structures are
preserved (Q = P).

* Solution: minimize the KL-divergence between P and Q:

Pij
Qij

* ¥ = argmin KL(P||Q) = X, ; P;j log
%




SNE: miminizing the loss function

¥ = argmin KL(P||Q) = 2. Pij log iy
Y ! Qij

* Use gradient descent to find embedded points, {y;}
dLosSsS
g)’i = 2j(Pij — Qi) Vi — ¥j)-

* Not a convex optimization problem, so there are many
local minima.

e Can show that



Problem with SNE

When we try to maintain the same neighborhood probabilities between the low and high
dimensional spaces, we end up “crowding” the points in the lower dimensional space.

Pairwise distances between points in a standard Gaussian:

0.4 -
o
g 0.3 - Dimensionality
j mm 2D
= 0.2 - B 50D
§ B 500D
o
& 0.1

0 5 10 15 20 25 30 35
Pairwise distances

Dmitry Kobak | Machine Learning I | Manifold learning and t-SNE



Fixing SNE with t-SNE

< Gaussian
» Change the distribution in the embedding S 7] distribution
. . > = Student’s £
Space, Q;; to have a heavier-tailea G o distribution]
distribution, a t-distribution. s
o | | | |

exp(~llyi-; 1)

* SNE used Qj<—i = Yizk €xp(=llyi—ykll?)

p(x) oc (1+ )~ (+D/2 (/[

2 -1
(1+[lyi=41°)
YiekAHYi—yrll#)~1

1

for v =1 we get p(x) X 172

* t-SNE uses Qj; =

* Everything else remains the same as in SNE.



Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x1,x2,...,X,},

cost function parameters: entropy constant, C to set g;

optimization parameters: number of iterations 7', learning rate 1
Result: low-dimensional data representation 97) = {y; .y, ....y,}.
begin

compute pairwise affinities p;; with entropy constant, C to set g;;

___ Pjitpijj
set pU = n

sample initial solution 9% = {y1,y2,...,y,} from A(0,1074])
for /=1 to 7' do
compute low- dlmensmnal affinities g;; (using Equation 4)

compute gradlent (using Equation 5)

set ) = oylt= )+T]89,

end
end




t-SNE on MINIST

(each color labels 1
one of the 10 digits)

Dmitry Kobak | Machine Learning I | Manifold learning and t-SNE



Single-cell transcriptomics (single-cell RNA sequencing): samples are cells, features

are genes.

A Central Nervous System
Cortex

middie POSEENor pyprain

Olfactory Bulb a%
d?ﬁ X

rebellum

IS

Hippocampus
Thalamus

Spinal Cord

Peripheral
Nervous System

Dorsal Root Ganglion

L

W,
Sympathetic Chain

Enteric Nervous System
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Myenteric Plexus
—Muscle Layer

Astroependymal cells

Cerebellum neurons

Cholinergic, monoaminergic, peptidergic

Di- and mesencephalon neurons

Enteric neurons

Hindbrain neurons

Immature neural

Immune cells

Neural crest-like glia

Oligodendrocytes

Peripheral sensory neurons

Spinal cord neurons

Sympathetic neurons

@ Telencephalon interneurons
Telencephalon projecting neurons

@ Vascular cells
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Zeisel et al. (2018)
n = 500,000



Digital humanities: samples are books, features are words.
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Social Science (G-H) B¢ £y
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* Schmidt (2018)
n = 15,000,000
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UNIVERSITAT
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Some pros and cons: PCA vs t-SNE

PCA—captures global structure via shared PC axes.
 No issues with local minima / sub-optimal solutions---SVD gives minimal.
* Projection axes can be examined for interpretability.
 Can be computed efficiently (SVD)
« Can embed new points without updating the embedding space.

* Limited to capturing linear structures (but can be generalized using augmented
feature space/kernels).

t-SNE—captures local structure by preserving neighborhoods

« Can model non-linear manifolds.
 Thus can preserve richer local structures (e.g. think swiss roll).
 Expensive to compute, but there are tricks to speed it up.
* Subject to local minima during optimization.
* No explicit projection mapping, so:
* less potential for interpretability
* cannot be applied to new points (no explicit mapping given).---must re-run it.




