
CS 189/289
Today’s lecture outline

1. Finish PCA.
2. Non-linear dimensionality reduction (t-SNE)



Recall: PCA
• Goal: find dimensions w most of the “information” in the 

original data, .
• Directions accounting for most variance and yielding lowest 

.

5K original faces,  𝑥 ∈ ℝ
1024 PCA basis vectors,  𝑢 ∈ ℝ
(from 𝑋 𝑋 𝑈𝐷𝑈 ) Reconstruction, 𝑋 𝑋𝑈 𝑈



Linear algebra for PCA
• Need to compute the principal axes, , of . 
• This is an eigendecomposition of the matrix .

• Computing its eigendecomposition has time complexity .

• What if ? e.g., images of pixels, and   
images. 

• Could we do something cheaper?

• Yes. Need to understand the SVD.



Linear algebra for PCA mean centered data, 

Recall the spectral theorem from MVG lecture, which gives a 
spectral (eigen) decomposition:.

• The covariance matrix 
for PCA, , is 
symmetric (and PSD). 

• It turns out, there is a 
generalization of the 
spectral decomposition, 
for non-symmetric and 
non-square matrices, 
the SVD that will be 
helpful.



Singular Value Decomposition (SVD)
Can be applied to any matrix 𝑀.Can think of M as linear transformation broken 

down into three steps, by looking at its effect on the 
unit disc and the two canonical unit vectors e1 and e2:
1. Left: 𝑽𝑻rotates the disc and unit vectors.
2. Bottom: Σ stretches scales axes by 𝜎 Σ ,

(singular values).
3. Right: U performs another rotation.

https://en.wikipedia.org/wiki/Singular_value_decomposition
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• Has time complexity 𝑂 𝑚 𝑛 𝑚𝑛 .
• 𝛴 is unique (if in descending order), but 𝑉 and 𝑈 are 

generally not: e.g. sign flips.
• (Eigendecomposition is unique if all eigenvalues are unique)
• If M is square+symmetric, yields the spectral decomposition.



Singular Value Decomposition (SVD)
• Columns in are the eigenvectors of , 

called the left singular vectors of M    
( ).

• Columns in are the eigenvectors of , 
called the right singular vectors of M 
( ).

• Both spectral decompositions at once!

• Eigenvalues are the same, given by ,
( are the singular values of ):
Since 𝑣 is an eigenvector for 𝑀 𝑀, it follows 

that 𝑀 𝑀𝑣 𝜆 𝑣 .  It follows that…
…. 𝑀𝑀 𝑀𝑣 𝜆 𝑀𝑣 thus 𝑀𝑣 is an 

eigenvector for 𝑀𝑀 with eigenvalue 𝜆 !

Can be applied to any matrix 𝑀.



• Recall this example with ,e.g. pixels, images. 
• How can we make use of what we just learned to do PCA faster than the 

eigendecomposition ?
• Instead of spectral decomposition of …
• …directly use SVD of the data matrix: 
• Because columns in are the eigenvectors of .
• , are needed eigenvalues.
• SVD has time complexity .

𝑋 ∈ ℝSingular Value Decomposition (SVD)



For PCA we want projections onto top PCs.
• When we used a spectral decomposition, , we 

compute: ( are eigvecs of .
• When using the SVD of , we can instead get this from:
• :, : :, : : , : (“scores” in PCA basis).
• We don’t need to compute covariance matrix, or do the 

projections, we just need !

Singular Value Decomposition (SVD)



“Eckart Young theorem” 1936 
• The SVD “k-reconstruction” produces the best -rank 

approximation by the matrix norm, .
• First proven by Schmidt (of Gram-Schmidt fame) in 1907 for 

Froebenius norm.
• Later rediscovered by Eckart & Young 1936, also generalized to 

other norms..
• Thus, PCA provides the best low rank approximation to the data 

matrix.

https://en.wikipedia.org/wiki/Low‐rank_approximation#Proof_of_Eckart%E2%80%93Young%E2%80%93Mirsky_theorem_(for_spectral_norm)



For PCA and other applications, don’t need the entire 
SVD, and can make do with “trimmed down” versions:
1. Full SVD
2. Thin SVD (remove columns of U not 

corresponding to rows of V*) 
3. Compact SVD (remove vanishing singular values 

and corresponding columns/rows in U and V*), 
4. Truncated SVD (keep only largest t singular values 

and corresponding columns/rows in U and V*)

Practicalities: Reduced SVDs

https://en.wikipedia.org/wiki/Singular_value_decomposition





PCA from neural networks!

• Special kind of neural network: an 
autoencoder.

• Learned parameters with MLE recovers the 
same subspace as PC-k (one layer, all linear, k 
nodes). 

• Can generalize by making non-linear 
transfers, and more layers, etc.

https://towardsdatascience.com/understanding‐pca‐autoencoders‐algorithms‐everyone‐can‐understand‐28ee89b570e2



Can we do PCA if don’t have explicitly?
• Suppose you’re given pairwise distances between 

cities, , and asked you to find a 2D 
representation?

• Think of for some unobserved 
(instead of ). 

• Now new basis is in from: .
• We just performed Multidimensional Scaling (MDS):
• Implicitly assumes some latent space of unknown 

dimension for which the distance is an inner product 
distance, 𝑇.  

• Could be non-linear distance function of actual (e.g., 
if latent space had a polynomial expansion).

https://www.cs.princeton.edu/courses/archive/fall13/cos323/notes/cos323_f13_lecture11_dim_red.pdf
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Recall the “swiss roll” type of data from last class

https://jhui.github.io/2017/01/15/Machine‐learning‐Multi‐dimensional‐scaling‐and‐visualization/

What would happen if we applied PCA 
with two dimensions to these data?

Ambient dimension=3
Manifold dimensions=2

Hint: PCA is a linear transformation, 



Recall the “swiss roll” type of data from last class

https://jhui.github.io/2017/01/15/Machine‐learning‐Multi‐dimensional‐scaling‐and‐visualization/

• This is not what we want!
• These data require a non-linear mapping.



PCA non‐linear

PCA vs non-linear embedding on MNIST



Neighborhood embeddings
Explicitly try to find a low dimensional embedding that is good at 
preserving neighborhoods of original points in ambient space.
1. NE: neighbor embedding (e.g. IsoMap Tenenbaum et al 2000 )
2. SNE: stochastic NE (Hinton & Roweis 2002)
3. t-SNE: t-distributed SNE (Van der Maaten & Hinton 2008)



Neighborhood Embedding (NE) aka Isomap

Step 3: Given this set of pairwise distances, 
put them in a matrix, , and perform MDS.

https://www.andrew.cmu.edu/user/georgech/95‐865/Lectures/Lecture%20‐%2003_essence.pdf



Example of Isomap

https://www.andrew.cmu.edu/user/georgech/95‐865/Lectures/Lecture%20‐%2003_essence.pdf



IsoMap on Swiss Roll type example

https://jhui.github.io/2017/01/15/Machine‐learning‐Multi‐dimensional‐scaling‐and‐visualization/



Comments on Isomap

https://www.andrew.cmu.edu/user/georgech/95‐865/Lectures/Lecture%20‐%2003_essence.pdf



From NE to stochastic NE (SNE)
• Make the event of two samples being neighbors a random 

variable:
• The probability that 𝑥 “chooses” 𝑥 as its neighbor (𝑥 ∈ ℝ ) is 

given by 𝑃←
/

∑ /
, and 𝑃← 0

• Smells like a Gaussian, but normalized so that 1 ∑ 𝑃← .

• Symmetrize & normalize, 𝑃 𝑃  𝑃← +𝑃← ) which can be 
interpreted as probability to pick this pair out of all pairs of points.

• Set 𝜎 adaptively such that entropy of 𝑃:← is                                    
constant, ∑ 𝑃← log𝑃← .



From NE to stochastic NE (SNE)
• From original data, 𝑋 ∈ ℝ , we have defined stochastic 

neighborhoods with probability distribution,  𝑃 𝑃 .

• Now posit low-dimensional representations, 𝑌 ∈ ℝ , and 
define stochastic neighborhoods for them,  𝑄 𝑄 , 

• 𝑄 ∑  (setting 𝜎 )

• Goal: find 𝑌 such that stochastic neighborhood structures are 
preserved (𝑄 𝑃 .

• Solution: minimize the KL-divergence between 𝑃 and 𝑄:

𝑌 argmin 𝐾𝐿 𝑃| 𝑄 ∑ 𝑃  𝑙𝑜𝑔, .

𝑃←
𝑒𝑥𝑝 𝑥 𝑥 /2𝜎

∑ 𝑒𝑥𝑝 𝑥 𝑥 /2𝜎



Aside: Kullback-Leibler (KL) Divergence
• Also called Relative Entropy.
• Measures how much one distribution diverges from another.
• For discrete probability distributions, and , it is defined as:

• Not a true distance metric because not symmetric in and :

https://www.cs.ox.ac.uk/people/varun.kanade/teaching/ML‐MT2016/slides/slides03.pdf



Aside: Kullback-Leibler (KL) Divergence



Aside: Kullback-Leibler (KL) Divergence

• Consider data, where and a model with params , .
• If minimizing the KL divergence (instead of MLE), 

||



Aside: Kullback-Leibler (KL) Divergence

• Consider data, where and a model with params , .
• If minimizing the KL divergence (instead of likelihood for MLE), 

||

̂ ]



Aside: Kullback-Leibler (KL) Divergence

• Consider data, where and a model with params , .
• If minimizing the KL divergence (instead of MLE), 

||

̂ ]



From NE to stochastic NE (SNE)
• From original data, 𝑋 ∈ ℝ , we have defined stochastic 

neighborhoods with probability distribution,  𝑃 𝑃 .

• Now posit low-dimensional representations, 𝑌 ∈ ℝ , and 
define stochastic neighborhoods for them,  𝑄 𝑄 , 

• 𝑄 ∑  (setting 𝜎 )

• Goal: find 𝑌 such that stochastic neighborhood structures are 
preserved (𝑄 𝑃 .

• Solution: minimize the KL-divergence between 𝑃 and 𝑄:

• 𝑌 argmin 𝐾𝐿 𝑃| 𝑄 ∑ 𝑃  𝑙𝑜𝑔, .

𝑃←
𝑒𝑥𝑝 𝑥 𝑥 /2𝜎

∑ 𝑒𝑥𝑝 𝑥 𝑥 /2𝜎



SNE: miminizing the loss function

• Use gradient descent to find embedded points, 

• Can show that .

• Not a convex optimization problem, so there are many 
local minima. 

, .



Problem with SNE 
When we try to maintain the same neighborhood probabilities between the low and high 
dimensional spaces, we end up “crowding” the points in the lower dimensional space.



Fixing SNE with t-SNE
• Change the distribution in the embedding 

space, to have a heavier-tailed 
distribution, a t-distribution.

• SNE used ← ∑

• t-SNE uses ← ∑

• Everything else remains the same as in SNE.



entropy constant, C to set 𝜎

entropy constant, C to set 𝜎



t‐SNE on MNIST

(each color labels 
one of the 10 digits)







Some pros and cons: PCA vs t-SNE
PCA—captures global structure via shared PC axes.

• No issues with local minima / sub-optimal solutions---SVD gives minimal.
• Projection axes can be examined for interpretability.
• Can be computed efficiently (SVD)
• Can embed new points without updating the embedding space.
• Limited to capturing linear structures (but can be generalized using augmented 

feature space/kernels).
t-SNE—captures local structure by preserving neighborhoods

• Can model non-linear manifolds.
• So can preserve richer local structures (e.g. think swiss roll).
• Expensive to compute, but there are tricks to speed it up.
• Subject to local minima during optimization.
• No explicit projection mapping, so:

• less potential for interpretability
• cannot be applied to new points (no explicit mapping given).

• Can model non-linear manifolds.
• Thus can preserve richer local structures (e.g. think swiss roll).
• Expensive to compute, but there are tricks to speed it up.
• Subject to local minima during optimization.
• No explicit projection mapping, so:

• less potential for interpretability
• cannot be applied to new points (no explicit mapping given).---must re-run it.


