Markov Chains

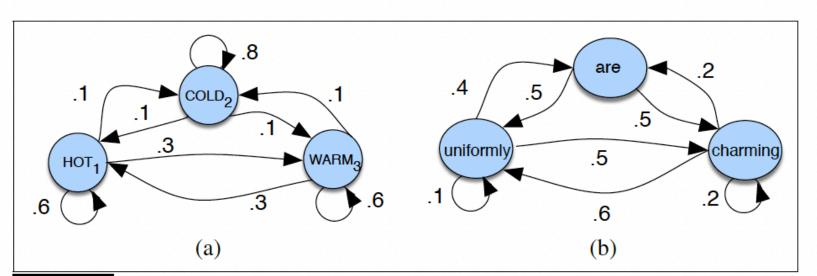


Figure A.1 A Markov chain for weather (a) and one for words (b), showing states and transitions. A start distribution π is required; setting $\pi = [0.1, 0.7, 0.2]$ for (a) would mean a probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

Markov assumption

More formally, consider a sequence of state variables $q_1, q_2, ..., q_i$. A Markov model embodies the **Markov assumption** on the probabilities of this sequence: that when predicting the future, the past doesn't matter, only the present.

Markov Assumption: $P(q_i = a | q_1 ... q_{i-1}) = P(q_i = a | q_{i-1})$ (A.1)

Markov Chains

 $Q = q_1 q_2 \dots q_N$ $A = a_{11} a_{12} \dots a_{n1} \dots a_{nn}$

 $\pi = \pi_1, \pi_2, ..., \pi_N$

a set of N states

a **transition probability matrix** *A*, each a_{ij} representing the probability of moving from state *i* to state *j*, s.t. $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$ an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state *i*. Some states *j* may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

The Weather-Ice Cream HMM

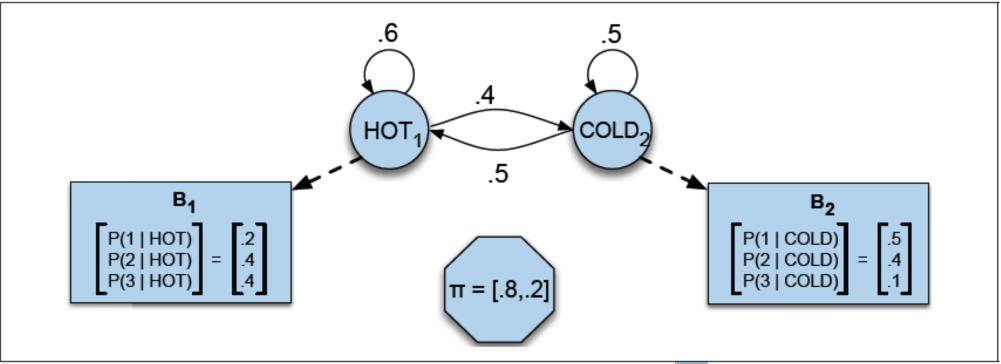


Figure A.2 A hidden Markov model for relating numbers of ice creams eaten by Jason (the observations) to the weather (H or C, the hidden variables).

Hidden Markov Models

 $Q = q_1 q_2 \dots q_N$

a set of N states

 $A = a_{11} \dots a_{ij} \dots a_{NN}$ a transition probability matrix A, each a_{ij} representing the probability of moving from state *i* to state *j*, s.t. $\sum_{i=1}^{N} a_{ij} = 1 \quad \forall i$ a sequence of T observations, each one drawn from a vocabulary V = $O = o_1 o_2 \dots o_T$ $v_1, v_2, ..., v_V$ $B = b_i(o_t)$ a sequence of observation likelihoods, also called emission probabili**ties**, each expressing the probability of an observation o_t being generated from a state *i* an **initial probability distribution** over states. π_i is the probability that $\pi = \pi_1, \pi_2, ..., \pi_N$

the Markov chain will start in state *i*. Some states *j* may have $\pi_i = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

The three problems for HMMs

Problem 1 (Likelihood): Problem 2 (Decoding): Problem 3 (Learning): Given an HMM $\lambda = (A, B)$ and an observation sequence *O*, determine the likelihood $P(O|\lambda)$. Given an observation sequence *O* and an HMM $\lambda = (A, B)$, discover the best hidden state sequence *Q*. Given an observation sequence *O* and the set of states in the HMM, learn the HMM parameters *A* and *B*.

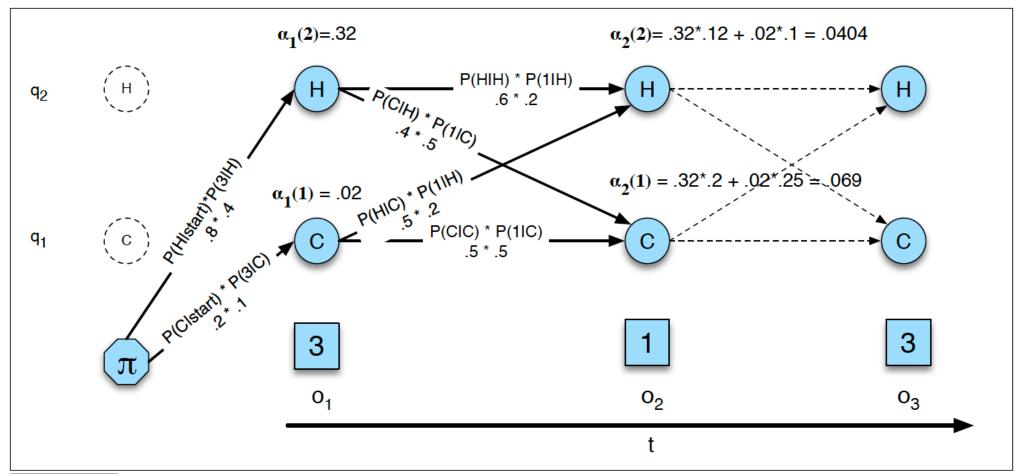


Figure A.5 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3. Hidden states are in circles, observations in squares. The figure shows the computation of $\alpha_t(j)$ for two states at two time steps. The computation in each cell follows Eq. A.12: $\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i)a_{ij}b_j(o_t)$. The resulting probability expressed in each cell is Eq. A.11: $\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$.

Probabilistic Graphical Models

Also known as Bayes Nets or Belief Nets

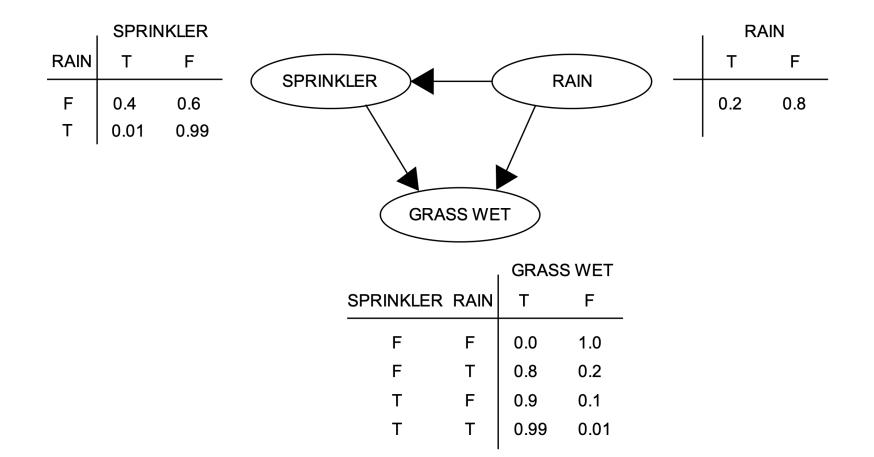
Judea Pearl of UCLA got a Turing award for his work on these

Special cases of these were known before e.g. Hidden Markov Models

Joint probability distributions

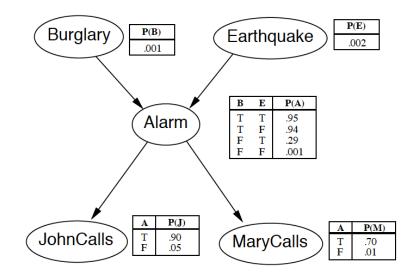
- Caanonical example is a multivariate Gaussian. The joint probability density is specified by the mean, a *n*-dimensional vector, and the covariance matrix, a $n \times n$ symmetric matrix.
- Suppose we have n binary random variables. Then the joint distribution can be specified by a table with 2^n entries. This quickly becomes intractable, both for specification and subsequently in estimation from data.
- The secret to tractability is "conditional independence". This information can be captured by a directed acyclic graph (DAG). For such a graph, every node has well defined "parents" and the joint distribution is the product of "local conditional distributions"

P(R,S,G) = P(R) P(S|R) P(G|S,R)



I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

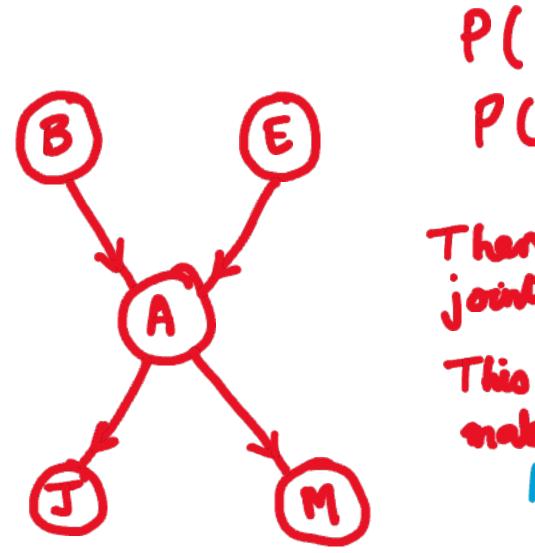
Variables: *Burglar*, *Earthquake*, *Alarm*, *JohnCalls*, *MaryCalls* Network topology reflects "causal" knowledge:



Note: $\leq k$ parents $\Rightarrow O(d^k n)$ numbers vs. $O(d^n)$

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$\mathbf{P}(X_1,\ldots,X_n) = \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i))$$



P(B, E, A, J, n) =P(B) P(E) P(A|B, E) P(JA)P(MIA) There are 2° entries in the joint fortability distribution This "factorized" representation makes it much more concise. 10 numbers instead of 3)

Given the joint probability distribution we can answer various questions

• What is the probability that it is raining, given that the grass is wet?

$$\Pr(R=T\mid G=T) = rac{\Pr(G=T,R=T)}{\Pr(G=T)} = rac{\sum_{x\in\{T,F\}}\Pr(G=T,S=x,R=T)}{\sum_{x,y\in\{T,F\}}\Pr(G=T,S=x,R=y)}$$

$$\Pr(R = T \mid G = T) = rac{\Pr(G = T, R = T)}{\Pr(G = T)} = rac{\sum_{x \in \{T, F\}} \Pr(G = T, S = x, R = T)}{\sum_{x, y \in \{T, F\}} \Pr(G = T, S = x, R = y)}$$

We can calculate the probability of any case using the joint probability distribution e.g.

$$egin{aligned} \Pr(G = T, S = T, R = T) &= \Pr(G = T \mid S = T, R = T) \Pr(S = T \mid R = T) \Pr(R = T) \ &= 0.99 imes 0.01 imes 0.2 \ &= 0.00198. \end{aligned}$$

Then the numerical results (subscripted by the associated variable values) are

$$\Pr(R=T \mid G=T) = rac{0.00198_{TTT} + 0.1584_{TFT}}{0.00198_{TTT} + 0.288_{TTF} + 0.1584_{TFT} + 0.0_{TFF}} = rac{891}{2491} pprox 35.77\%.$$

The Weather-Ice Cream HMM

(Source: Jurafsky HMM handout)

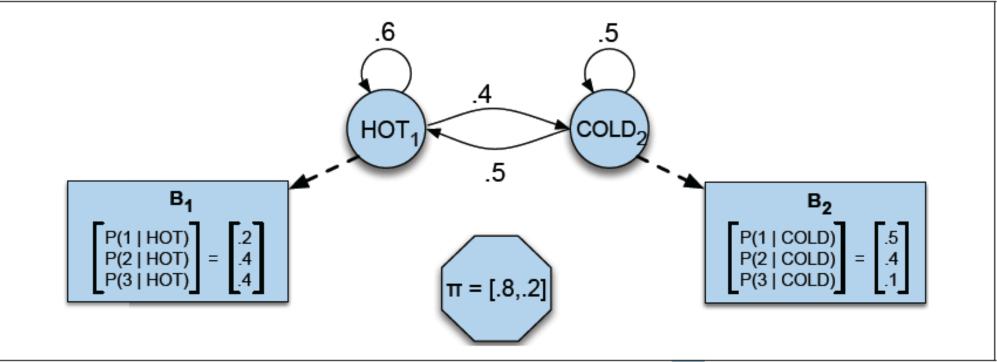
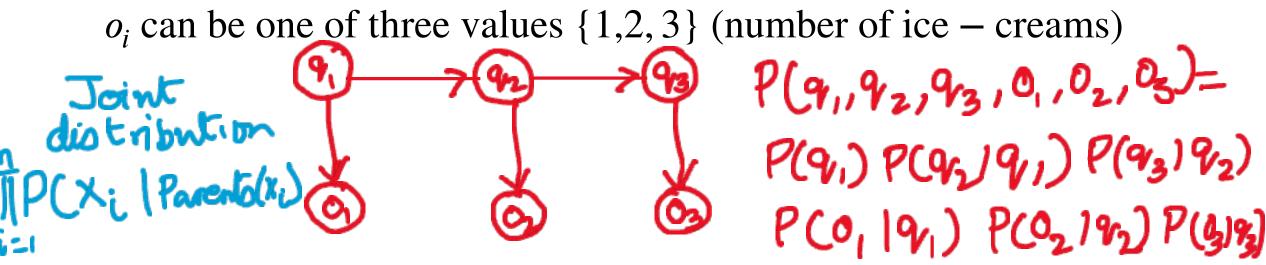


Figure A.2 A hidden Markov model for relating numbers of ice creams eaten by Jason (the observations) to the weather (H or C, the hidden variables).

This is a stochastic automaton, not a DAG, but we can rewrite it as a DAG

DAG representation for the weather-ice cream model

- We use q_1 , q_2 , q_3 to denote the hidden states on day 1, 2, 3 etc.
- We use o_1 , o_2 , o_3 to denote the observations on day 1, 2, 3 etc.
- The q_i can take one of two values {hot, cold}
- The



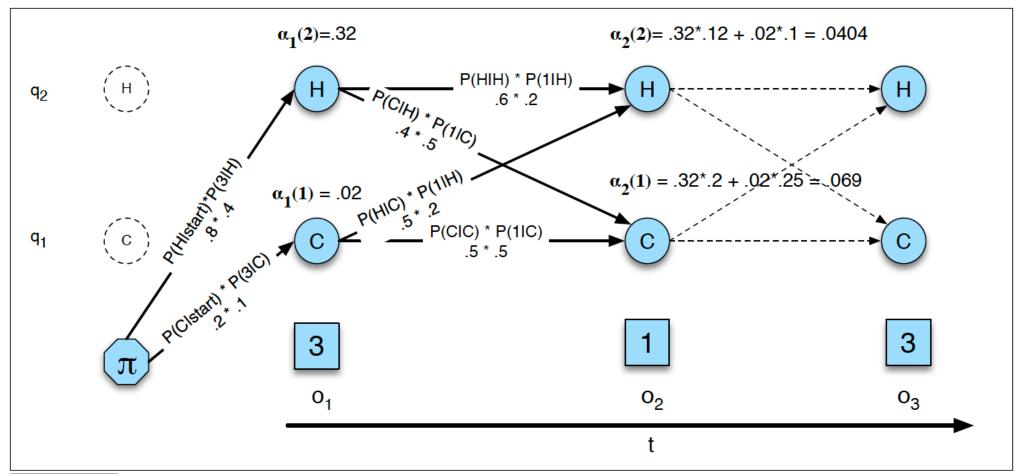


Figure A.5 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3. Hidden states are in circles, observations in squares. The figure shows the computation of $\alpha_t(j)$ for two states at two time steps. The computation in each cell follows Eq. A.12: $\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i)a_{ij}b_j(o_t)$. The resulting probability expressed in each cell is Eq. A.11: $\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$.

The α update algorithm

$$\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$$
(A.11)

Here, $q_t = j$ means "the *t*th state in the sequence of states is state *j*". We compute this probability $\alpha_t(j)$ by summing over the extensions of all the paths that lead to the current cell. For a given state q_j at time *t*, the value $\alpha_t(j)$ is computed as

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i)a_{ij}b_j(o_t) \tag{A.12}$$

The three factors that are multiplied in Eq. A.12 in extending the previous paths to compute the forward probability at time t are

$\alpha_{t-1}(i)$	the previous forward path probability from the previous time step
a_{ij}	the transition probability from previous state q_i to current state q_j
$b_j(o_t)$	the state observation likelihood of the observation symbol o_t given
	the current state j

The Viterbi Algorithm: Sum replaced by Max

$$v_t(j) = \max_{q_1, \dots, q_{t-1}} P(q_1 \dots q_{t-1}, o_1, o_2 \dots o_t, q_t = j | \lambda)$$
(A.13)

Note that we represent the most probable path by taking the maximum over all possible previous state sequences $\max_{q_1,\dots,q_{t-1}}$. Like other dynamic programming algorithms, Viterbi fills each cell recursively. Given that we had already computed the probability of being in every state at time t - 1, we compute the Viterbi probability by taking the most probable of the extensions of the paths that lead to the current cell. For a given state q_i at time t, the value $v_t(j)$ is computed as

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$$
(A.14)

The three factors that are multiplied in Eq. A.14 for extending the previous paths to compute the Viterbi probability at time t are

$v_{t-1}(i)$	the previous Viterbi path probability from the previous time step
a_{ij}	the transition probability from previous state q_i to current state q_j
$b_j(o_t)$	the state observation likelihood of the observation symbol o_t given
	the current state <i>j</i>

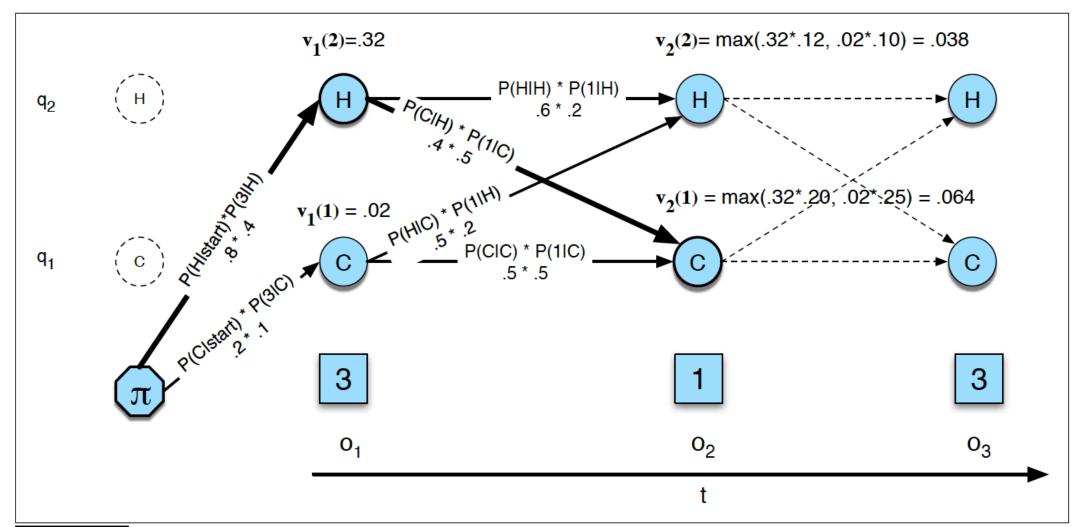


Figure A.8 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of $v_t(j)$ for two states at two time steps. The computation in each cell follows Eq. A.14: $v_t(j) = \max_{1 \le i \le N-1} v_{t-1}(i) a_{ij} b_j(o_t)$. The resulting probability expressed in each cell is Eq. A.13: $v_t(j) = P(q_0, q_1, \dots, q_{t-1}, o_1, o_2, \dots, o_t, q_t = j | \lambda)$.

The Viterbi backtrace

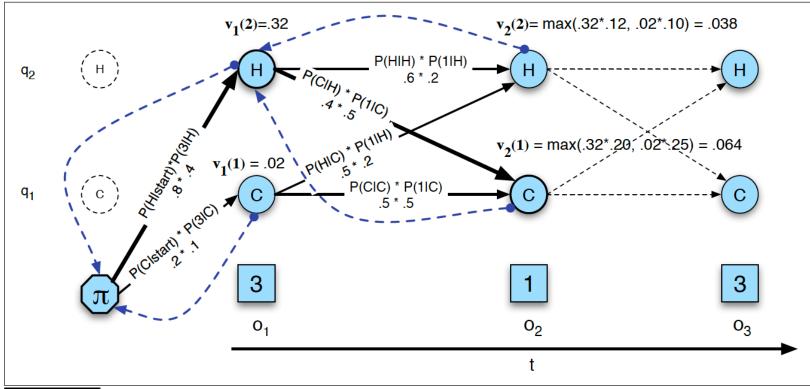


Figure A.10 The Viterbi backtrace. As we extend each path to a new state account for the next observation, we keep a backpointer (shown with broken lines) to the best path that led us to this state.