CS 189/289

Today's lecture:

* Maximum likelihood estimation (MLE)



Recall from last class:
Problem of digit classification from handwriting: is [ﬂa /", yes or no?
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Recall from last class:
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Recall from last class:
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* One of the main ways to "learn’” (aka estimate) the
setting of ‘good” in statistical models:

* Principle of Maximum Likelihood Estimation (MLE).
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ML: main concepts

* Training data set: D = {(x;, y)}, e,?u
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ML: main abstract ideas
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ML: main abstract ideas
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ML: main abstract ideas
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Training data set: D={(x,yDIL1 . er o yeroin
* Model class: Linear Models
aka hypothesis class f (x| )=wix+

Linear classifier rule |
SW), X +b - 0 wldeasiorn

 Optimization goal: find "good” values
Of parameters ( ). four 2t

But was does ‘good” mean?



ML: main abstract ideas

. . . N i ERP

 Model class: Linear Models

aka hypothesis class fxlw,b) = w x +
. P L( b) — ( — by Squared Loss
Loss Function: a, a—b)
. TN N
* Learning Objective: argmin > L(y,, f(x; | w,b))
wb =]
Optimization Problem




Linear classifier rule
(W), % +b = 0O w(decsion
o o 7 bmAN:/,ﬁ

Maximum Likelinood Estimation (MLE) ...~

This principle gives a useful, principled and widely-used loss ~ ~—
function to estimate parameters of statistical models (from linear ™
regression, to neural networks, and beyond).

» Training data set: D = {(xi’yi)}?l:l b e a;ire;?l; iy

* Model class: Linear Models

aka hypothesis class fxlw,b) = w x + \

(L\s
« Loss Function: L(a,b)=(a~b) sauared Loss '
* Learning Objective: argminiL(y,-,f(x,- 'w,b))
Optimization Problem




Reminder: probability distributions

Random variable (RV) is a function: x - R e.qg. p(heads) = 0.5
1. Discrete RV, e.g. coin toss heads/tails.
2. Continuous RV, e.g. height

Discrete RVs have a Probability  Continuous RVs have a Probability
Mass Function (PMF) Density Function (PDF)
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e.g. distributions of discrete RVs

1. Bernouilli RV—model the toss of a coin that can be biased
P(heads) = p, P(tails) =1 — p, parameter is p.
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2. Binomial RV—model number of heads, k, of n biased coin

tosses.
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e.g. distributions of discrete RVs

1. Bernouilli RV—model the toss of a coin that can be biased
P(heads) = p, P(tails) =1 — p, parameter is p.

2. Binomial RV—model number of heads, k, of n biased coin

tosses.
P (D0

3. Poisson RV— model number of mutations, k, occurring in a cell
population with mean mutation rate, A4, over fixed time interval
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Distributions of continuous RVs

Continuous RVs have a Probability Density Function
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Multivariate distributions

Space of outcomes is a vector instead of a scalar:

Multinomial (generalization from binomial):

e urn with balls of different colors. % =)
2

.L".\
N
* Pick a ball at random. \JZ%;%’;,

* pq itisgreen, p, itis blue and p5 itis red @

Multivariate Gaussian:
e Mean is a vector, and variance becomes covariance.
« Will learn more about this next lecture.
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e Given data D = {x;}i~., for x; € R®
* Assume a set (family) of distributions on R%, Ang{x)|0 € ©}.
0 9 me &n Cu) K/\A’
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The basic set-up of MLE
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7 (7))

e Given data D = {x;}i~., for x; € R®
« Assume a set (family) of distributions on Rd, |60 € 0}
* Assume D contains samples from one of these distributions:

X; ~ Pa(x)
* This assumes that each element of D is identically and independently
aistributed (iid).

The basic set-up of MLE



The basic set-up of MLE g metn () Gnd

Jav an(e <(57')

e Given data D = {x;}i~., for x; € R® ; ;\/N S e l‘(Zﬂ
J x)

* Assume a set (family) of distributions on R%, { |60 € 0}
* Assume D contains samples from one of these distributions:
X; ~ Pp(x)
* This assumes that each element of D is identically and independently
distributed (iid). " like b sod




The basic set-up of MLE

Q7
Ovie = argér(})axp(DW) 4/ \

o /

.44/ \x




The basic set-up of MLE

e Given data D = {x;}i~., for x; € R®
e Assume a set (family) of distributions on R%, {pg(x)|0 € ©}.
« Assume D contains samples from one of these distributions:

xX; ~ pPa(x)
-

0, 5 = argmaxp(D|0)
0E®

/s there always one unigue
MLE parameter value?
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Some properties of MLE NGt )20 6)

* The MLE is a consistent estimator: meaning [that as we get
more and more data (drawn from one distripution in our
family), then we converge to estimating theftrue value of 8
for D.

« The MLE is statistically efficient: it's making good use of the
data available to it ( “least variance” parameter_estimates).

* The value of p(D|8.r) IS invariant toQe-parameterizatl

« MLE can still yield a parameter estimate even when the data
were not generated from that family (phew & caveat emptor).



e.g. MLE for univariate Gaussian

« Arguments can be made from the Central Limit Theorem that height is
normally distributed.

* Suppose you were given a set if height measurements, {x;}, how would
you derive the estimate for the mean and variance, using MLE?



e.g. MLE for univariate Gaussian

Goal: 8y, = argmaxp(D|0) from set of data D = {x;}-,

e
. N1 (x—u)?
Assume data are generated as X~N(x|,u,0 ) = Tooz ¢ T T2

* SO assume MLE family of distributions, p(X = x|8) = N(X|u, o%).

» Now our goal is to find 8y = (Umre, 0FLr) = argmax p(D|u, o2).
fe0

e First step, write down the likelihood function:
° p(Dlg) — p(xlixZ’ ...XN‘,U, 0-2) — Hévzl p(xl|1u' 0-2)'

* The product of the terms is a little inconvenient to work
with.



e.g. MLE for univariate Gaussian

 Likelihood: p(xq, x3, .. xy |, 02) = TP, p(xi |1, 02).

|

* The log likelihood ("LL") is@motonically increasin® function of
the likelihood.

N
0gp(D10) = ¥ logp(xilnc?) | 04X
=1

——

* Therefore Oy = argmaxp(D|6) = argmaxlogp(D|6)
0€6 0]




e.g. MLE for univariate Gaussian

« Now we have a concrete optimization problem to work with:

N
UyiE Og1E = argér(laaxlogp(DW) = argmaxz: logp(xi‘u,az)
w02 =1

» How will we solve this optimization problem?

* Find a setting of the parameters for which the partial derivatives are
0 (Le., a stationary point).

* Then check whether the setting is a maximum (negative second
derivative), a minimum, etc. (first year calculus).

e (it #params>1, check it Hessian is negative definite; for 1D Gaussian,
Hessian is diagonal, so can check each separately).



e.g. MLE for univariate Gaussian

* Find the setting of the parameters that set the partial derivatives to
Zero:;

N
UyiE Og1E = arg(rir(laaxlogp(DW) = argmaxz: logp(xi‘,u,cz)
o2 =

i=1
yLets expand out so we can take the derivative: é—L ) L>
4 21y Al = 23, 1o e exp (o)

M =)



e.g. MLE for univariate Gaussian

* Find the setting of the parameters that set the partial derivatives to
Zero:;

UMLE OMLE = argg(;axlogp(DlH) = argmaxz: logp(xl‘l«l»
n,o-
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e.g. MLE for univariate Gaussian

():L ( )e %ting of the parameters that set the partial derivatives to

UMLE) PMLE = argér(})axlogp(DW) = argmaxz: logp(xl-' 2)
u,02 -

out so we can take the derivative:
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e.g. MLE for univariate Gaussian
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1 (x — w)?

e.g. MLE for univariate Gaussian  »Glee) = —er -

UMLE OMLE = argmaxz log N(XLLU o )

* Again, but this time for o =
oOLL 0 N
502 = 952 (— —log( 2?1'0' BY) Z(mn H)ﬂ)

N
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MLE vields a “point estimate” of our parameter

* When we perform MLE, we get just one single estimate of
the parameter, 8, rather than a distribution over it which
captures uncertainty.

* |n Bayesian statistics, we obtain a (posterior) distribution
over 8. We will touch more on this in a few lectures.

W)LJLI\ |




MLE vields a “point estimate” of our parameter

* When we perform MLE, we get just one single estimate of
the parameter, 8, rather than a distribution over it which
captures uncertainty.

* In Bayesian statistics, we obtain a (posterior) distribution
over 8. We will touch more on this in a few lectures.
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MLE vields a “point estimate” of our parameter

* When we perform MLE, we get just one single estimate of
the parameter, 8, rather than a distribution over it which
captures uncertainty.

» In Bayesian statistics, we obtain a (pr |
over 8. We will touch more on this il | |z, e

o) —




e.g. MLE for the multinomial distribution \%

 Consider a six-sided die that we will roll, and we want to know the probability of each side of the
die turning up (6 = 64 ... 6¢).

Assume we have observed N rolls, with RV, X ~ pg(X).
We write that P(X = k|0) = 6,, (when k" side faced up).
Lets use MLE to estimate these parameters.

First, since one side must always face up, we know that 1 = )}, 6. l{ ( ,y z K % ,
Second, we can write P(X = x|0) = 6, (pick off the right parameter). K

Now we write the likelihood:

P(D|6) = p(xy, .- XN|3)—1_[p(xl|6?) 1_[1_[9 i=k]

=1 k=

Now our MLE problem becomes:

\_~
Oy g = argmaxlogp(D|6) = _argmas



e.g. MLE for the multinomial distribution \%

Have a constrained optimization problem: Conghranod

Oyp = argmaxlogp(D|0) = =
66 :

What is one technique you should have learned in first year calculus to
solve this?

The technique of Lagrange multipliers:
J(0,4) =logp(D|68) + A(1 — )., 0;) (look for stationary points wrt 8, 1)



e.g. MLE for the multinomial distribution \%

J(6,2) = log p(D|0) + A(1 — Xy 6k) = Xi=q l0g 6, + A(1 — X 61)

1. % =0=21=),0; vvejust get the constraint back)
9] _ 9 y6 _ 9 Tk _ ) — e
2. aek—aekz — lOg@ Agk—ek A= 0361(— 1

3. Lets plug thisinto 1), 1 = Zk 0; = Zk > A=),n =N.
4. All together then, 8, = F'



Doing MLE requires optimization  fwus = argmaxlogp(D|6)
e For Gaussian, multinomial (and more), the MLE can be
obtained in closed form by setting the derivative to zero.

« What if we had a model such as Prof. Malik mentioned in the
first lecture?

: : o= Wi X)), N - L\
* Here, we need iterative L\/J e B e hD)
optimization (can take entire b 0 0,
classes on special cases of this

(e.g. Convex Optimization).
More later.




Prof. Malik in first lecture:

* Mentioned that a good loss to estimate parameters is the cross-

entropy (rather than the likelihood).

* SO why are we teaching you MLE?! They are equivalent.

Training a single layer neural network

* A good choice of loss function.i e Cross
entropy | -
g g, n O, “"("‘J;)U("Oc))

input dodan
* We model the activation function g as a
sigmoid ( ) |
2z —
J | + 2xp(-Z)

* Finding w reduces to logistic regression!

We G wae STocHAsTIc GRADIENT
DESCENT.

L\/J - 9(E W), 0.-g(=v )]
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Relationship between likelihood, cross-entropy, etc.

» The cross-entropy is a term from information theory.

» Jo understand the connection between MLE and
maximizing the cross-entropy, we need to know some
concepts from information theory:

1. Entropy
2. Cross-entropy
3. KL-divergence (relative entropy).



Entropy: a measure of expected surprise

Think about a flipping a coin once, and how surprised you
would be at observing a head.

< p(head) = 0

\\‘ p(head) = 0.01
T
e

p(head) = 0.5

p(head) =1



Entropy: a mea

sure of expected surprise

T
& al’

* The “surprise” of observing that a discrete random variable Y
takes on value k is:

9 =1

cAsP(Y =k) -
cAsP(Y =k) »
* The entropy of

= —log(P(Y = k))

0, the surprise of observing k approaches oo.
1, the surprise of observing k approaches 0.
he distribution of Y is the expected surprise:

H(Y) = Ey[—

og P(Y = k)] = z P(Y = k) log P(Y = k)
k



Entropy example: flipping a coin

H(Y)=-) P =y;)log; P(Y =y;) -
‘i: 1 o1 Entropy of a coin flip
P(Y=t) = 5/6
P(Y=f) = 1/6 ;

Probability of heads

H(Y) =-5/6 log, 5/6 - 1/6 log, 1/6
=0.65



Entropy of a random variable Y:

High-Entropy Corpus

“High Entropy”
— Y is from a uniform like distribution

E] =]
e &
3 3
< c

— Flat histogram

— Values sampled from it are less predictable

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

“Low Entropy”

—Y is from a varied (peaks and valleys)
distribution

— Histogram has many lows and highs

— Values sampled from it are more predictable
(Slide from Vibhav Gogate)



From Entropy to Relative Entropy

» Also called the Kullback-Leibler (KL) Divergence.
« Measures how much one distribution diverges from another.
« For discrete probability distributions, P and Q, it is defined as:

P(x)
O(x)
« Not a true distanCeetric because not symmetric in P and Q:

D1 (P||Q) # Dk1(Q||P) \ J




From Relative Entropy to Cross-Entropy

Dk, (P||Q) = EP(X)ZOQ Qﬁxi

= Ep(x) [log Q(X)] — Ep(o [lOgP(X)



From Relative Entropy to Cross-Entropy

Dg1(P]1Q) = zP(x)log QExi

1
= Ep(y) |log Q(X)] — Ep(o [logP(X)
=H(P,Q)—H(P)

’\/'V\ .
C:«;%\"wf’; Qr\*\( g?'

« (Consider data, D where xj~P g4t aNd a model with params 8, p(x|8).
* |f minimizing the KL divergence (instead of MLE),

argming D, (PaatallP(x]0)) =)) =



From Relative Entropy to Cross-Entropy

Dk, (P|lQ) _EP(X)ZOQ F(x)

Q(x)
1 MW”%%
— EP(x) lOg Q(X)] — EP(x) [lOg P(X) 4
= 1.0~ HE)
CM"M{’; e"{vog?‘

« (Consider data, D where xj~P g4t aNd a model with params 8, p(x|8).
* |f minimizing the KL divergence (instead of MLE),

argming D, (Paatallp(x10)) =)) = argming H(Paata p(x|6))

_ argmaX@Og PW«Cfgg'f@nM/)ﬁ




From Relative Entropy to Cross-Entropy

Dg1(P]1Q) = zP(X)IOQ QExi

1
= Ep(x) log Q(X)] — EP(x) [lOQ P(X) HLE (}W@W\.

=H(P,Q)—H(P)

’\/'v\ .
C;%\"wf’; Qr\*\( g?'

« (Consider data, D where xj~P g4t aNd a model with paramg 8, p(x|8).
* |f minimizing the KL divergence (instead of MLE),

argming D, (Paatallp(x10)) =)) = argming H(Paata p(x19)) + H(Daata)

= argmaxk,, a[logp(x|«9@ax >N logp(x;




From Relative Entropy to Cross-Entropy (then to MLE!)

» Performing MLE maximizes the likelihood function.
* This is equivalent to maximizing the cross-entropy.
* And equivalent to minimizing the KL-divergence (aka relative entropy).



Extra



e.g. MLE for the multinomial distribution %

/09 (1) =2
bM @]CL>O
50 Wl fhve
A1) Jﬂc Dk(
This Is a stationary point. But is it a maximum? Could check |anh,r\but lets
instead consider our know equivalence e/ Yintes |
(u? Ik A
DKL(pdata”p(xlg)) — ZI6<=1Pdata(X — k) 08 76 (= Jﬁf



