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Today’s lecture:

•Maximum likelihood estimation (MLE)



Recall from last class:
Problem of digit classification from handwriting: is    thi a “7”, yes or no?

• 60K training examples of digits (6K per class)
• Each digit is a 28 x 28 pixel grey level image. 
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Recall from last class:

•One of the main ways to “learn” (aka estimate) the 
setting of “good” parameters in statistical models:
• Principle of Maximum Likelihood Estimation (MLE).
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• Model class:
aka hypothesis class

• Optimization goal: find “good” values 
of parameters ( ). 
But was does “good” mean?

Linear Models
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• Loss Function:

• Learning Objective: 

L(a,b)  (ab)2 Squared Loss
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Optimization Problem

𝑥௜ ∈ 𝑅஽
𝑦௜ ∈ 𝑅 or   𝑦௜ ∈ ሼെ1,1ሽ



Maximum Likelihood Estimation (MLE)
This principle gives a useful, principled and widely-used loss 
function to estimate parameters of statistical models (from linear 
regression, to neural networks, and beyond).



Reminder: probability distributions
Random variable (RV) is a function: e.g. heads
1. Discrete RV, e.g. coin toss heads/tails.
2. Continuous RV, e.g. height

Discrete RVs have a Probability 
Mass Function (PMF)

Continuous RVs have a Probability 
Density Function (PDF)

integrates to 1  
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e.g. distributions of discrete RVs
1. Bernouilli RV—model the toss of a coin that can be biased

, parameter is .
2. Binomial RV—model number of heads, , of biased coin 

tosses.

3. Poisson RV– model number of mutations, , occurring in a cell 
population with mean mutation rate, , over fixed time interval



Distributions of continuous RVs
Continuous RVs have a Probability Density Function



Multivariate distributions
Space of outcomes is a vector instead of a scalar:
Multinomial (generalization from binomial): 
• urn with balls of different colors. 
• Pick a ball at random.
• ଵ it is green, ଶ it is blue and ଷ it is red

Multivariate Gaussian:
• Mean is a vector, and variance becomes covariance.
• Will learn more about this next lecture.
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• Assume a set (family) of distributions on ௗ , ఏ .
• Assume contains samples from one of these distributions: 

௜ ఏො
• This assumes that each element of is identically and independently 

distributed (iid).

Goal of MLE: “learn”/estimate the value of that 
defines the distribution from which the data came.

Definition: ெ௅ா is a MLE for with respect to the data and 
set of distributions, if ெ௅ா

ఏ∈஀
.



The basic set-up of MLE
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The basic set-up of MLE
• Given data ௜ ௜ୀଵ

ே for ௜
ௗ

• Assume a set (family) of distributions on ௗ , ఏ .
• Assume contains samples from one of these distributions: 

௜ ఏො

ெ௅ா
ఏ∈஀

Is there always one unique 
MLE parameter value?



Some properties of MLE

• The MLE is a consistent estimator: meaning that as we get 
more and more data (drawn from one distribution in our 
family), then we converge to estimating the true value of 
for .

• The MLE is statistically efficient: it’s making good use of the 
data available to it ( “least variance” parameter estimates).

• The value of ெ௅ா is  invariant to re-parameterization.
• MLE can still yield a parameter estimate even when the data 

were not generated from that family (phew & caveat emptor).



e.g. MLE for univariate Gaussian

• Arguments can be made from the Central Limit Theorem that height is 
normally distributed.
• Suppose you were given a set if height measurements, ௜ , how would 

you derive the estimate for the mean and variance, using MLE?



e.g. MLE for univariate Gaussian
Goal: ெ௅ா

ఏ∈஀
from set of data ௜ ௜ୀଵ

ே

• Assume data are generated as ଶ ଵ
ଶగఙమ

௫ିఓ మ

ଶఙమ

• So assume MLE family of distributions, ଶ .
• Now our goal is to find ெ௅ா ெ௅ா ெ௅ா

ଶ
ఏ∈஀

ଶ .

• First step, write down the likelihood function:
• ଵ ଶ ே

ଶ
௜

ଶே
௜ୀଵ .

• The product of the terms is a little inconvenient to work 
with.



e.g. MLE for univariate Gaussian
• Likelihood: ଵ ଶ ே

ଶ
௜

ଶே
௜ୀଵ .

• The log likelihood (“LL”) is a monotonically increasing function of 
the likelihood.

௜
ଶ

ே

௜ୀଵ

• Therefore ெ௅ா
ఏ∈஀ ఏ∈஀



e.g. MLE for univariate Gaussian
• Now we have a concrete optimization problem to work with:

ெ௅ா ெ௅ா
ଶ

ఏ∈஀
ఓ,ఙమ

௜
ଶ
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• How will we solve this optimization problem?
• Find a setting of the parameters for which the partial derivatives are 

0 (i.e., a stationary point).
• Then check whether the setting is a maximum (negative second 

derivative), a minimum, etc. (first year calculus).
• (if #params>1, check if Hessian is negative definite; for 1D Gaussian, 

Hessian is diagonal, so can check each separately).
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• Find the setting of the parameters that set the partial derivatives to 
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e.g. MLE for univariate Gaussian
• Again, but this time for ଶ

𝑁 𝑥 𝜇,𝜎ଶ ൌ
1

2𝜋𝜎ଶ
𝑒𝑥𝑝 െ

𝑥 െ 𝜇 ଶ

2𝜎ଶ

𝜇ெ௅ா ,𝜎ெ௅ாଶ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥෍ log𝑁 𝑥௜ 𝜇,𝜎ଶ
ே

௜ୀଵ



MLE yields a “point estimate” of our parameter
• When we perform MLE, we get just one single estimate of 

the parameter, , rather than a distribution over it which 
captures uncertainty.

• In Bayesian statistics, we obtain a (posterior) distribution 
over . We will touch more on this in a few lectures.
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e.g. MLE for the multinomial distribution
• Consider a six-sided die that we will roll, and we want to know the probability of each side of the 

die turning up (𝜃 ൌ 𝜃ଵ …𝜃଺).
• Assume we have observed 𝑁 rolls, with RV, 𝑋 ∼ 𝑝ఏሺ𝑋ሻ.
• We write that 𝑃 𝑋 ൌ 𝑘 𝜃 ൌ 𝜃௞ (when 𝑘௧௛ side faced up).
• Lets use MLE to estimate these parameters.
• First, since one side must always face up, we know that 1 ൌ ∑ 𝜃௞௞ .
• Second, we can write 𝑃 𝑋 ൌ 𝑥 𝜃 ൌ 𝜃௫ (pick off the right parameter).
• Now we write the likelihood:

𝑃 𝐷 𝜃 ൌ 𝑝 𝑥ଵ, … 𝑥ே 𝜃 ൌෑ𝑝 𝑥௜ 𝜃 ൌ
ே

௜ୀଵ
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௞ୀଵNow our MLE problem becomes:

ெ௅ா
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௞
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e.g. MLE for the multinomial distribution
Have a constrained optimization problem:

ெ௅ா
ఏ∈஀ ఏ∈ሼ஀|ଵୀ∑ ఏೖೖ ሽ

௞
௡ೖ

଺

௞ୀଵ
What is one technique you should have learned in first year calculus to 
solve this? 

The technique of Lagrange multipliers:
௞௞ ) (look for stationary points wrt )



e.g. MLE for the multinomial distribution
௞௞ ௞

௡ೖ଺
௞ୀଵ ௞௞ )

1. డ௃
డఒ ௞௞ (we just get the constraint back)
డ௃
డఏೖ

డ
డఏೖ ௞

௡ೖ଺
௞ୀଵ - డ

డఏೖ ௞
௡ೖ
ఏೖ ௞

௡ೖ
ఒ

.

3. Lets plug this into 1), ௞
௡ೖ
ఒ ௞௞௞௞

4. All together then, ௞
௡ೖ
ே

.



Doing MLE requires optimization
• For Gaussian, multinomial (and more), the MLE can be 

obtained in closed form by setting the derivative to zero.
•What if we had a model such as Prof. Malik mentioned in the 

first lecture?
• Here, we need iterative

optimization (can take entire 
classes on special cases of this 
(e.g. Convex Optimization). 
More later.

𝜃ெ௅ா ൌ argmax
ఏ∈஀

log 𝑝ሺ𝐷|𝜃ሻ



Prof. Malik in first lecture:
•Mentioned that a good loss to estimate parameters is the cross-

entropy (rather than the likelihood).
• So why are we teaching you MLE?! They are equivalent.



• The cross-entropy is a term from information theory.
• To understand the connection between MLE and 

maximizing the cross-entropy, we need to know some 
concepts from information theory:
1. Entropy
2. Cross-entropy
3. KL-divergence (relative entropy).

Relationship between likelihood, cross-entropy, etc.



Entropy: a measure of expected surprise
Think about a flipping a coin once, and how surprised you 
would be at observing a head. 



Entropy: a measure of expected surprise
• The “surprise” of observing that a discrete random variable 

takes on value is:

• As , the surprise of observing approaches .
• As , the surprise of observing approaches .
• The entropy of the distribution of is the expected surprise:

௒
௞



Entropy example: flipping a coin



Entropy of a random variable  :

https://www.researchgate.net/figure/Hypothetical‐distributions‐of‐
term‐frequency‐in‐high‐and‐low‐entropy‐corpora_fig1_305417514



From Entropy to Relative Entropy
• Also called the Kullback-Leibler (KL) Divergence.
• Measures how much one distribution diverges from another.
• For discrete probability distributions, and , it is defined as:

• Not a true distance metric because not symmetric in and :

https://www.cs.ox.ac.uk/people/varun.kanade/teaching/ML‐MT2016/slides/slides03.pdf
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From Relative Entropy to Cross-Entropy (then to MLE!)

௄௅
௫
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• Consider data, where ୧ ௗ௔௧௔ and a model with params , .
• If minimizing the KL divergence (instead of MLE), 

ఏ ௄௅ ௗ௔௧௔|| ఏ ௗ௔௧௔ ௗ௔௧௔

௣೏̂ೌ೟ೌ ] ௜
ே
௜



From Relative Entropy to Cross-Entropy (then to MLE!)
• Performing MLE maximizes the likelihood function.
• This is equivalent to maximizing the cross-entropy.
• And equivalent to minimizing the KL-divergence (aka relative entropy).



Extra



e.g. MLE for the multinomial distribution

௞௞ ) (look for stationary points wrt )
డ௃
డఒ ௞௞ (we just get the constraint back)
డ௃
డఏೖ

డ
డఏೖ ௞

௡ೖ଺
௞ୀଵ - డ
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.

3. Lets plug this into 1: ௞
௡ೖ
ఒ ௞௞௞௞

4. All together then, ௞
௡ೖ
ே

.
This is a stationary point. But is it a maximum? Could check Hessian, but lets 
instead consider our know equivalence

௄௅ ௗ௔௧௔ ௗ௔௧௔
௉೏ೌ೟ೌ ௑ୀ௞
௉ሺ௑ୀ௞|ఏሻ

଺
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