GRAPH NEURAL NETWORKS & ROTATIONAL EQUIVARIANCE

University of California, Berkeley Fall 2023, CS 189/289A: Introduction to Machine Learning

Rasmus Malik Hoeegh Lindrup

Postdoc, BAIR/ICSI

Building on slides originally made by Daniel Rothchild

OUTLINE

- Lecture 1
 - Graph data
 - Graph tasks
 - Invariance and equivariance
 - Message passing
- Lecture 2
 - Rotational equivariance
 - Equivariant neural networks

GRAPH DATA

GRAPH

GRAPH

WHICH GRAPH CORRESPONDS TO THESE REPRESENTATIONS?

COMMON ARCHITECHTURES

COMMON ARCHITECHTURES

GRAPHS

(Connectome: Gigandet X, Hagmann P, Kurant M, Cammoun L, Meuli R, et al. (2008) Estimating the Confidence Level of White Matter Connections Obtained with MRI Tractography. PLoS ONE 3(12): e4006. doi:10.1371/journal.pone.0004006.)

(Particles: Sanchez-Gonzalez, Alvaro, et al. "Learning to simulate complex physics with graph networks." International conference on machine learning. PMLR, 2020.) (Food social network: https://www.uber.com/blog/uber-eats-graph-learning/)

(Serotonin: Yirik MA, Steinbeck C (2021) Chemical graph generators. PLoS Comput Biol 17(1): e1008504. https://doi.org/10.1371/journal.pcbi.1008504)

(Traffic: Derrow-Pinion, Austin, et al. "ETA prediction with Graph Neural Networks in Google Maps" Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 2021.)

GRAPH TASKS

CONCEPTUAL GRAPH TASKS

NODE-LEVEL: WEATHER FORECASTING

- Data: atmospheric variables like temperatures, wind speeds, pressures, etc., at diffent times, various longitude/latitudes, and levels in the atmosphere
- Represent the global weather state as a graph, model long-range dependencies with multi-mesh
- Task: predict future states of the graph, predicting future node features

(Lam, Remi, et al. "GraphCast: Learning skillful medium-range global weather forecasting." arXiv preprint arXiv:2212.12794 (2022).)

DRUG DISCOVERY: GRAPH-LEVEL

- Alzheimer's disease, Amyloid Beta plaques, betasecretase 1 protein (BACE1)
- Inhibit BACE1: good candidate for an Alzheimer's drug
- Task: given graph predict BACE1 inhibition (IC50)

DISCUSSION: GRAPH-, NODE-, OR EDGE-LEVEL?

DISCUSSION: GRAPH-, NODE-, OR EDGE-LEVEL?

EVALUATION

INVARIANCE AND EQUIVARIANCES

TRANSLATIONAL INVARIANCE AND EQUIVARIANCE

 $g(\mathbf{PAP}^{ op}) = g(\mathbf{A})$

 $f(\mathbf{PAP}^{ op}) = \mathbf{P}f(A)$

DISCUSSION: IN- AND EQUIVARIANCES OF MLPS, CNNS, RNNS, GNNS?

MESSAGE PASSING

GRAPH WITH ORDERING

GRAPH WITH ORDERING

APPLYING CONVOLUTIONAL FILTER?

ABSTRACT MESSAGE PASSING

$egin{aligned} \mathbf{M}_{\mathcal{N}(u)}^{(k)} &= \mathrm{AGGREGATE}^{(k)}\left(\{\mathbf{h}_v^{(k)}, orall v \in \mathcal{N}(u)\} ight) \ \mathbf{h}_u^{k+1} &= \mathrm{UPDATE}^{(k)}\left(\mathbf{h}_u^{(k)}, \mathbf{M}_{\mathcal{N}(u)}^{(k)} ight) \end{aligned}$

(Based on Chap. 5 in: Hamilton, William L. Graph representation learning. Morgan & Claypool Publishers, 2020.)

BASIC INSTANTIATION OF MESSAGE PASSING

$$\mathbf{h}_{u}^{(k)} = \sigma \left(\mathbf{W}_{ ext{self}}^{(k)} \mathbf{h}_{u}^{(k-1)} + \mathbf{W}_{ ext{neigh}}^{(k)} \sum_{v \in \mathcal{N}(u)} \left(\mathbf{h}_{v}^{(k-1)} + \mathbf{b}^{(k)}
ight)
ight)$$

(Based on Chap. 5 in: Hamilton, William L. Graph representation learning. Morgan & Claypool Publishers, 2020.)

CONVOLUTION AS MESSAGE PASSING ON GRID

Algorithm 1 CNN as message passing

Input: Weight matrix, **W**, with parameters $\theta_{u \rightarrow v}$, neighborhood function, $\mathcal{N}.$ $\textbf{Input:} \text{ Graph}, \mathcal{G} \text{ with nodes } \mathcal{V} = \{v_i\}_{i=0}^V \text{ and edges } \mathcal{E} = \{e_{u \rightarrow v} | u, v \in \mathcal{V}\}.$ **Output:** Updated node features $\mathbf{h}_{u}^{(1)}$ for all nodes uInitialize $\mathbf{h}_{u}^{(0)}$ as v_{u} for $k \in [0]$ do for $u \in \mathcal{V}$ do for $v \in \mathcal{N}(u) \cup \{u\}$ do $ext{Compute messages}: \mathbf{M}_{v
ightarrow u} = heta_{v
ightarrow u} \cdot \mathbf{h}_v^{(k)}$ end for Compute total message: $\mathbf{M}_u = \sum_{v \in \mathcal{N}(u)} \mathbf{M}_{v
ightarrow u}$ Update node: $\mathbf{h}_{u}^{(k+1)} \leftarrow \sigma(\mathbf{M}_{u})$ end for end for

Algorithm 2 Basic graph message passing

Input: Weight matrices, W_{self} , W_{neigh} , and bias, b, neighborhood function, \mathcal{N} . $\textbf{Input: Graph}, \mathcal{G} \text{ with nodes } \mathcal{V} = \{v_i\}_{i=0}^V \text{ and edges } \mathcal{E} = \{e_{u \rightarrow v} | u, v \in \mathcal{V}\},$ and a specified K number of rounds of message passing. **Output:** Updated node features $\mathbf{h}_{u}^{(K+1)}$ for all nodes uInitialize $\mathbf{h}_{u}^{(0)}$ as v_{u} for all nodes ufor $k \in [0, 1, \dots, K]$ do for $u \in \mathcal{V}$ do for $v \in \mathcal{N}(u)$ do $ext{Compute messages}: \mathbf{M}_{v
ightarrow u} = \mathbf{W}_{ ext{neighbors}} \mathbf{h}_v^{(k)} + \mathbf{b}$ end for Compute self message: $\mathbf{M}_{self} = \mathbf{W}_{self} \mathbf{h}_{u}^{k}$ Compute total message: $\mathbf{M}_u = \mathbf{M}_{ ext{self}} + \sum_{v \in \mathcal{N}(u)} \mathbf{M}_{v o u}$ Update node: $\mathbf{h}_{u}^{(k+1)} \leftarrow \sigma(\mathbf{M}_{u})$ end for end for

GRAPH MESSAGE PASSING NETWORKS

(Adapted from Thomas Kipf, https://tkipf.github.io/graph-convolutional-networks/)

GRAPH MESSAGE PASSING NETWORKS

DISCUSSION: WHAT ISSUES MIGHT A NAIVE IMPLEMENTATION RUN INTO?

DISCUSSION: WHAT ISSUES MIGHT A NAIVE IMPLEMENTATION RUN INTO?

$$\begin{aligned} & \mathbf{Graph-level:} \\ \mathbf{H}^{(t)} = \sigma \left(\mathbf{A} \mathbf{H}^{(k-1)} \mathbf{W}_{\text{neigh}}^{(k)} + \mathbf{H}^{(k-1)} \mathbf{W}_{\text{self}}^k \right) \\ & \text{Normalization:} \\ & \mathbf{h}_u^k = \sigma \left(\mathbf{W}^{(k)} \sum_{v \in \mathcal{N}(u) \cup \{u\}} \frac{\mathbf{h}_v}{\sqrt{|\mathcal{N}(u)||\mathcal{N}(v)|}} \right) \end{aligned}$$

GRAPH ATTENTION NETWORKS AND TRANSFORMERS

$$\mathbf{M}_{\mathcal{N}(u)} = \sum_{v \in \mathcal{N}(u)} lpha_{u,v} \mathbf{h}_{v}$$

$$lpha_{u,v} = rac{\exp\left(\mathbf{a}^ op\left[\mathbf{W}\mathbf{h}_u igoplus \mathbf{W}\mathbf{h}_v
ight]
ight)}{\sum_{v' \in \mathcal{N}(u)} \exp\left(\mathbf{a}^ op\left[\mathbf{W}\mathbf{h}_u igoplus \mathbf{W}\mathbf{h}_{v'}
ight]
ight)}$$

(left: Veličković, Petar, et al. "Graph Attention Networks." arXiv preprint arXiv:1710.10903 (2017)) (right: How to Build Graph Transformers with O(N) Complexity by Qitian Wu in @TDataScience)

5.28

DISCUSSION: LIVE DEMO

RECAP LECTURE 1

Algorithm 3 Basic graph message passing

Input: Weight matrices, W_{self} , W_{neigh} , and bias, b, neighborhood function, \mathcal{N} . $\textbf{Input: Graph}, \mathcal{G} \text{ with nodes } \mathcal{V} = \{v_i\}_{i=0}^V \text{ and edges } \mathcal{E} = \{e_{u \rightarrow v} | u, v \in \mathcal{V}\},$ and a specified K number of rounds of message passing. **Output:** Updated node features $\mathbf{h}_{u}^{(K+1)}$ for all nodes uInitialize $\mathbf{h}_{u}^{(0)}$ as v_{u} for all nodes ufor $k \in [0, 1, \dots, K]$ do for $u \in \mathcal{V}$ do for $v \in \mathcal{N}(u)$ do $ext{Compute messages}: \mathbf{M}_{v
ightarrow u} = \mathbf{W}_{ ext{neighbors}} \mathbf{h}_v^{(k)} + \mathbf{b}$ end for Compute self message: $\mathbf{M}_{self} = \mathbf{W}_{self} \mathbf{h}_{u}^{k}$ Compute total message: $\mathbf{M}_u = \mathbf{M}_{ ext{self}} + \sum_{v \in \mathcal{N}(u)} \mathbf{M}_{v o u}$ Update node: $\mathbf{h}_{u}^{(k+1)} \leftarrow \sigma(\mathbf{M}_{u})$ end for end for

GEOMETRIC INFORMATION

GEOMETRIC INFORMATION

ROTATION INVARIANCE AND EQUIVARIANCE

ROTATION INVARIANCE AND EQUIVARIANCE

ROTATION INVARIANCE AND EQUIVARIANCE

9.1