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Green fluorescent protein 
(GFP) folding itself

[2008 Nobel in chemistry for discovery and development of GFP,
 Osamu Shimomura, Martin Chalfie and Roger Y. Tsien]

Proteins are strings of nucleotides
238 length amino acid sequence:
MSKGEELFTGVVPILVELDGDVNGHKFSVSG
EDFFKS…NSHNVYIMADKQKNGIKVNFKIRH

Presenter Notes
Presentation Notes
Listed below are some specific tasks this method can carry out:
Targeted gene mutation
Creating chromosome rearrangement
Study gene function with stem cells
Transgenic animals
Endogenous gene labeling
Targeted transgene addition




plastic recycling (PETase) CO2 biosequestration (RuBisCO) 

gene editing (CRISPR/Cas9)

Protein engineering: therapeutics, environment, etc.

antibody therapeutics gene therapy virus 
delivery (AAV)

payload

antibiotics & biofuel 
production (PKS)

Presenter Notes
Presentation Notes
PKS: Polyketide synthases (enzymes) are an important source of naturally occurring small molecules used for chemotherapy. For example, many of the commonly used antibiotics. Goals: engineering polyketide synthases to produce “green” antibiotics, pharmaceuticals, and novel biofuels.
PETase are enzymes that catalyze the hydrolysis of PET (polyethylene terephthalate), from its polymers into constituent monomers which can then be used to recycle into new products.
RuBisCo: enzyme involved in the first major step of carbon fixation, a process by which atmospheric carbon dioxide is converted by plants and other photosynthetic organisms to energy-rich molecules such as glucose. it may be possible to improve photosynthetic efficiency by modifying RuBisCO genes in plants to increase catalytic activity and/or decrease oxygenation rates.[33][34][35][36] This could improve biosequestration of CO2. (Ribulose-1,5-bisphosphate carboxylase-oxygenase). RuBisCO is the most abundant protein in leaves, accounting for 50% of soluble leaf protein (and most abundant protein on earth).



Protein Structure Prediction

[slide from Jinbo Xu, TTI]



Presenter Notes
Presentation Notes
In 1961, he showed that ribonuclease could be refolded after denaturation while preserving enzyme activity, thereby suggesting that all the information required by protein to adopt its final conformation is encoded in its amino-acid sequence. 



Protein Structure Prediction

[slide from Jinbo Xu, TTI]



2020

State-of-
the-art is 
deep 
learning 
based:

Presenter Notes
Presentation Notes
GDT: The “Global distance test” score is calculated as the largest set of amino acid residues' alpha carbon atoms in the model structure falling within a defined distance cutoff of their position in the experimental structure, after iteratively superimposing the two structures.



[slide from Jinbo Xu, TTI]

AlphaFold2 relies on previous key insights



AlphaFold2 “almost end-to-end” neural network

Presenter Notes
Presentation Notes
AlphaFold2 predicts the 3D coordinates of all heavy atoms 
Input: amino acid sequence; aligned homologues (MSA);

Trunk:
The pink matrices are essentially “refined” MSA sequences.
The blue matrices are essentially “refined” residue pair “closeness”.

Structure module:
Introduces an explicit 3D structure (a rotation and translation for each residue, uses equivariant transformer, and a loss that places significant weight on orientational correctness.

“Recycling”: both within the structure module, and throughout, they use “iterative refinement” by repeatedly applying the final loss to outputs, and then feeding the outputs recursively through the same modules.

New equivariant attention architecture that uses intermediate losses to achieve iterative refinement of predictions.
Masked MSA loss to jointly train with structure
Learning from unlabeled protein sequences using self-distillation
Self-estimates of accuracy
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AlphaFold2 “almost end-to-end” neural network

(uses an equivariant attention architecture)

Presenter Notes
Presentation Notes
AlphaFold2 predicts the 3D coordinates of all heavy atoms 
Input: amino acid sequence; aligned homologues (MSA);

Trunk:
The pink matrices are essentially “refined” MSA sequences.
The blue matrices are essentially “refined” residue pair “closeness”.

Structure module:
Introduces an explicit 3D structure (a rotation and translation for each residue, uses equivariant transformer, and a loss that places significant weight on orientational correctness.

“Recycling”: both within the structure module, and throughout, they use “iterative refinement” by repeatedly applying the final loss to outputs, and then feeding the outputs recursively through the same modules.

New equivariant attention architecture that uses intermediate losses to achieve iterative refinement of predictions.
Masked MSA loss to jointly train with structure
Learning from unlabeled protein sequences using self-distillation
Self-estimates of accuracy




AlphaFold2 “almost end-to-end” neural network
• Can end up with atom positions in violation of physics.
• Thus relies on old style energy-based approaches to 
refine the predicted 3D coordinates.



AlphaFold2 “almost end-to-end” neural network

From great blog by Mohamed Alquraishi:

https://moalquraishi.wordpress.com/2020/12/08/alphafold2-casp14-
it-feels-like-ones-child-has-left-home/



Some thoughts on AlphaFold2
• DeepMind took on a long-tackled, well-defined 

problem, with clear data, clear benchmarks, and a clear 
way to demonstrate improvement.

• Expense of protein structure data used for AlphaFold2, 
conservatively estimated at ∼US$20 billion (Burley et al., 2023).

• They relied heavily on years of prior work in protein 
folding research: “template-based modelling”, 
“evolutionary co-evolution modelling”, “contact 
prediction”, energy-functions.
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plastic recycling (PETase) CO2 biosequestration (RuBisCO) 

gene editing (CRISPR/Cas9)

Protein engineering: therapeutics, environment, etc.

antibody therapeutics gene therapy virus 
delivery (AAV)

payload

antibiotics & biofuel 
production (PKS)

Presenter Notes
Presentation Notes
PKS: Polyketide synthases (enzymes) are an important source of naturally occurring small molecules used for chemotherapy. For example, many of the commonly used antibiotics. Goals: engineering polyketide synthases to produce “green” antibiotics, pharmaceuticals, and novel biofuels.
PETase are enzymes that catalyze the hydrolysis of PET (polyethylene terephthalate), from its polymers into constituent monomers which can then be used to recycle into new products.
RuBisCo: enzyme involved in the first major step of carbon fixation, a process by which atmospheric carbon dioxide is converted by plants and other photosynthetic organisms to energy-rich molecules such as glucose. it may be possible to improve photosynthetic efficiency by modifying RuBisCO genes in plants to increase catalytic activity and/or decrease oxygenation rates.[33][34][35][36] This could improve biosequestration of CO2. (Ribulose-1,5-bisphosphate carboxylase-oxygenase). RuBisCO is the most abundant protein in leaves, accounting for 50% of soluble leaf protein (and most abundant protein on earth).



Fundamental difficulty: design space is nearly infinite

#atoms in 
universe

#grains of sand 
on earth

~1080

~1018

• Also highly rugged design space 
⟹ size scales as ~20𝐿𝐿

• Discrete search space (no gradients)

𝐿𝐿



Successes in navigating this complex space

1. Nature: via evolution over millions of years.

green fluorescent 
protein folding itself

MSKGEELFTGVVPILV
ELDGDVNGHKFSVSG
EGEGDATYGKLTLKFIC
TTGKLPVPWPTLVTTF
SYGVQCFSRYPDHMK
QHDFFKSAMPEGYVQ
ERTIFFKDDGNYKTRA
EVKFEGDTLVRIELKGI
DFKEDGNILGHKLEYN
YNSHNVYIMADKQKN
GIKVNFKIRHNIEDGSV
QLADYQQNTPIGDGPV
LLPDNHYLSTQSALSK
DPNEKRDHMVLLEFVT
AAGITHGMDELYK 



1. Nature: via evolution over millions of years.
2. Various protein engineering strategies.

Successes in navigating this complex space

Presenter Notes
Presentation Notes
Cytochrome C phylogeny




Protein engineering strategies until now
i. Computation (“data free”): physics-based 

energy functions (e.g., Rosetta) to model 
protein structure, and protein binding.                       
~1997-2023’ish (almost R.I.P.)

ii. Wetlab: directed evolution to iteratively 
directly design property of interest.             
~1993-present [2018 Nobel Prize]

emerging

iii. Machine learning (augmented): generative 
models; function prediction; structure 
prediction, etc. ~2018(?)-present

Presenter Notes
Presentation Notes
2. Computation:
Search through large combinatorial space using MCMC.
Requires that engineering goal is dictated by structure in known manner (e.g. via binding), and that the energy function is accurate enough for desired goal.
Not automated: typically requires deep protein expertise (human in-the-loop).
2. Directed evolution. 
Search through space by making actual proteins, making small moves, and then measure in the lab. Move greedily.
Requires good starting protein, sensible ways to make small moves, and ability to measure what you care about, but need not be dictated by structural knowledge.




One strategy: ML-based Directed Evolution 

https://www.bsse.ethz.ch/bpl/research/directed-evolution.html

1. Replace assay with 
predictive model.

2. Replace search with 
intelligent search.

2018 Nobel Prize 
in Chemistry

Goal: get same results with 
fewer measurements, and/or, 
get better result than pure DE.



Did AlphaFold2 “solve” protein engineering?

sequence→ structure

Presenter Notes
Presentation Notes
Also not great at predicting bound conformations, especially when binding requires conformational change, and to DNA/RNA



Did AlphaFold2 “solve” protein engineering?

• No: don’t typically know which 
protein structures we need.

• If did, would need: 
structure→sequence.                     
(decent ML solutions exist).

sequence→ structure

• Bottleneck challenge: predict 
which protein have the function 
we desire.

• AlphaFold2 was a breakthrough, 
and will surely be useful.

Presenter Notes
Presentation Notes
Also not great at predicting bound conformations, especially when binding requires conformational change, and to DNA/RNA



A suite of ML protein engineering problems

Prediction tasks

function 
prediction

Presenter Notes
Presentation Notes
Fitness prediction may happen via structure, or straight to sequence.



backbone 
design

Design tasks

A suite of ML protein engineering problems



Some trends in ML + protein engineering
1. Representation learning: 

un(self)supervised learning on large-
scale databases (millions of natural 
proteins,  with e.g., Transformers), or 
families.

• This is really (approx.) density estimation, 
𝑝𝑝𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  through a bottleneck.

[Biswas et al., Nat. Meth. 2021]

Presenter Notes
Presentation Notes
(for me, self-supervised is proxy to unsupervised)
Probably helpful, but not game-changing.

representation coming from a latent variable, 𝑧, which may or may not be treated stochastically.
Motivation: may able to better build supervised models on top of good representation (e.g. “Low N protein engineering”, NBT, Biswas et al)
Problem: often simple baselines compare favorably to giant, expensive modern day ML models (e.g. our 2021 NBT paper, Hsu et al).




Some trends in ML + protein engineering
2. (Conditional) generative models for sequences. 
This is really (conditional) density estimation, 𝑝𝑝𝜃𝜃(sequence|C), 
(e.g. auto-regressive Transformer, Potts/VAE).
a) structure-conditioned,                             

aka “inverse folding” 
b) “control tag” conditioned,                                           e.g., 

protein family

Presenter Notes
Presentation Notes
Probably helpful, b) more doubtful.
Although successes, often much post hoc filtering, focused on one well-understood family, produces similar function, not better, with low sequence similarity.  Comparison to baseline approaches not rigorous.



Some trends in ML + protein engineering
3. (Conditional) generative models for structure. 
• This is really (conditional) density estimation, 

𝑝𝑝𝜃𝜃(backbone|F), (e.g. “Diffusion” models latest trend).
• Only as good as function prediction, 𝑝𝑝(𝐹𝐹|𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏).
• Paired with inverse-folding to get sequence.

[Ingraham et al. bioRxiv 2022]

Presenter Notes
Presentation Notes
Either need good classifier for function, or need to know and condition on active site.
Cleverly use AlphaFold2 to reverse diffuse, or use tons of smart stuff, like John Ingraham.



Some trends in ML + protein engineering
4. ML to estimate function from sequence and/or function:

• e.g., 𝑝𝑝𝜃𝜃(𝐹𝐹|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠).
• Few or no labelled data.
• Leverage evolutionary 
information*, or large 
unsupervised models on pan-
proteomic database.

*key part of AlphaFold2

Presenter Notes
Presentation Notes
Strategies: 
Model 𝑝(𝑥) on “evolutionary data set, and assume that 𝑝(𝑦|𝑥) is monotonic with 𝑝 𝑥 --”MSA modeling”.
Model 𝑝(𝑦|𝑥) using better inductive biases (e.g. “Epistatic networks”, Aghazadeh, 2021)

Problem: The inversion step is non-trivial for large sequence space; model is not accurate far from the training data.




Some trends in ML + protein engineering
5. Structure prediction: filling the gaps left by AlphaFold2

• Orphan proteins (with no/few homologs).
• Proteins in bound form.
• Protein dynamics and            

conformational distributions.
• Protein-protein binding.
• Protein-DNA/RNA binding



ML focus of my group: “ML-based design”:
A. Natural tension between extrapolation vs. trustworthiness. [1-4]. 
B. Related to causality and estimation of epistemic uncertainty (whereas we 

typically think mostly of alleotoric) uncertainty [4].
C. Suitable protein inductive biases (this is not vision/NLP) [4-7].
D. Design of distributions/libraries instead of individual sequences [1,2,8,9].
1. Brookes et al ICLM 2019 (CbAS)
2. Fannjiang et al NeurIPS 2020 (autofocus)
3. Fannjiang et al PNAS 2023 (conformal)
4. Nisonoff et al arXiv 2022 (fv-BNN)
5. Aghazadeh et al Nat. Comm. 2021 (sparse)
6. Brookes et al PNAS 2022 (funct. pred.)
7. Hsu et al Nat. Biotech. 2022 (function pred.)
8. Zhu, Brookes, et al ,bioRxiv. (opt. design)
9. Busia & Listgarten, bioRxiv (log enrichment)
10. Fannjiang & Listgarten, arXiv (overview)

Presenter Notes
Presentation Notes
Have been mostly focused on problems arising from predicting function imperfectly.

Epistemic refers to lack of knowledge -- something we could in principle know for sure -- in contrast to aleatoric "intrinsic randomness" involved in which of possible futures will actually occur. 



Analogy: can we trust “banana” design?

desired property
cell fitness

…

catalytic 
efficiency



desired property
cell fitness

…

Naïve design yields abstract art.

catalytic 
efficiency

non-folding protein 1. Brookes et al ICLM 2019 (CbAS)
2. Fannjiang et al NeurIPS 2020 (autofocus)



Pathologies of DNNs: in design, we’re the adversary

https://www.pluribus-one.it/research/sec-ml/wild-patterns



Brookes, Park & Listgarten ICML 2019

𝑝𝑝 𝑦𝑦 𝑥𝑥

𝑝𝑝(𝑥𝑥)

How to handle a pathology in design?

[Gomez-Bombarelli, ACS Cent. Sci. 2018.]

Leverage prior knowledge, 𝑝𝑝 𝑥𝑥 , by 
modeling:
1. Where training data lie.
2. “Protein-likeness”, e.g. stability via 

biophysics, or implicitly via large pan-
proteome unsupervised models.

David Brookes

Conditioning by Adaptive Sampling for Robust Design (CbAS)



Hunter Nisonoff

Coherent blending of function value prior information, such 
as biophysical models, to Bayesian Neural Networks (BNN).

regular BNN

Augmenting Neural Networks with Priors on Functional Values

Nisonoff, Wang, Listgarten, bioRxiv

function-value 
augmented BNN

Easy to implement, zero added cost.

Presenter Notes
Presentation Notes
Relies on estimation of epistemic uncertainty (uncertainty that is driven to zero with Inf data)



The real deal: testing+developing our ideas with 
wetlab collaborators

• David Schaffer (UC Berkeley; AAV for gene therapy)
• David Savage (UC Berkeley; CRISPR-Cas9 system)
• Chris Garcia (Stanford, protein-protein interactions)
• Phil Romero (U Wisconsin; enzymes for plastic degradation)
• Secure and Robust Biosystems Design Group (LL National Labs, 

Columbia University, University of Maryland, University of Minnesota)

+

Presenter Notes
Presentation Notes
AAV: as ‘eye’ is considered as part of CNS and does not have a neutralizing antibodies problem because of the retina-blood barrier, so in theory, re-administration is possible here too with local injection. However, most clinical trials so far have not looked at re-administration yet, as most of these treatments provide long-term (at least a few years I think) of expression. If there is a need to re-administer, the transgene may be delivered with another capsid (prob need some design here too) or use immunosuppression in parallel to avoid potential problems, but I don’t think it’s fully studied yet in these trials. Most studies focus on the initial efficiency of the treatment, meaning to get as many cells transduced (infected) as possible to achieve the targeted therapeutic threshold
Phage: The alarming rise in antimicrobial resistance coupled with a lack of innovation in antibiotics has renewed interest in the development of alternative therapies to combat bacterial infections. Despite phage therapy demonstrating success in various individual cases, a comprehensive and unequivocal demonstration of the therapeutic potential of phages remains to be shown. The co-evolution of phages and their bacterial hosts resulted in several inherent limitations for the use of natural phages as therapeutics
Which phage can tackle which bacteria, and then design phages accordingly.




Engineering AAV for gene therapy delivery

UC Berkeley: Chem. & Bio. Engineering

David Schaffer Bonnie Zhu David Brookes 
(now at Dyno)

Akosua Busia
Now on job market!

The Adeno-associated virus (AAV) is a non-pathogenic 
virus that shows promise for delivering gene therapies 
(e.g. deliver blindness therapy to outer retina).

Zhu, Brookes, Busia,..., Nowakowski, Listgarten, Schaffer, bioRxiv

Presenter Notes
Presentation Notes
as ‘eye’ is considered as part of CNS and does not have a neutralizing antibodies problem because of the retina-blood barrier, so in theory, re-administration is possible here too with local injection. However, most clinical trials so far have not looked at re-administration yet, as most of these treatments provide long-term (at least a few years I think) of expression. If there is a need to re-administer, the transgene may be delivered with another capsid (prob need some design here too) or use immunosuppression in parallel to avoid potential problems, but I don’t think it’s fully studied yet in these trials. Most studies focus on the initial efficiency of the treatment, meaning to get as many cells transduced (infected) as possible to achieve the targeted therapeutic threshold



Promising AAV clinical trials
Recent clinical trial success:
Leber’s congenital amaurosis (AAV)

Spinal muscular atrophy (AAV) 

Hemophilia B (AAV)
Lipoprotein lipase deficiency (AAV) 



• Inefficient delivery to target tissues/cells.
• Non-specific delivery.
• Pre-existing immunological neutralization.
• Inefficient uptake into target cells.

Ongoing challenges for AAV-based therapeutics 

First AAV project goal, “library design”:
• Obtain optimal starting “library” for all 

these engineering goals.
• i.e., fix the huge amount of library that 

gets wasted because doesn’t “package”.



AAV library design
1. Build predictive model and test (sequence→packaging fitness).

Presenter Notes
Presentation Notes
Minimize stop (which end in G and A), but also being able to encode all amino acids. Hence slightly counter-intuitive



AAV library design
2. Wetlab validate model (measure titer directly)

 

Sequences 
Predicted 

Log 
Enrichment 

Experimental 
Viral Titer 

(vg/𝝁𝝁L) 
LSSTTAA 4.834 8.70 × 1011 
DSRLSGT 3.793 1.82 × 1012 
LEPDAAL 2.044 1.72 × 1010 
IRWRATG (-) 1.91 1.48 × 107  
RWPRRVL (-) 5.84 1.83 × 104  

Presenter Notes
Presentation Notes
Minimize stop (which end in G and A), but also being able to encode all amino acids. Hence slightly counter-intuitive



3. Invert ML predictive model to get diversity-fitness optimality curve

AAV library design

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜙𝜙𝔼𝔼𝑝𝑝𝜙𝜙(𝑥𝑥) 𝑓𝑓 𝑥𝑥 + 𝜆𝜆𝜆𝜆[𝑝𝑝𝜙𝜙]

Presenter Notes
Presentation Notes
Minimize stop (which end in G and A), but also being able to encode all amino acids. Hence slightly counter-intuitive



4. Validate in the lab.
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜙𝜙𝔼𝔼𝑝𝑝𝜙𝜙(𝑥𝑥) 𝑓𝑓 𝑥𝑥 + 𝜆𝜆𝜆𝜆[𝑝𝑝𝜙𝜙]

AAV library design

Presenter Notes
Presentation Notes
Minimize stop (which end in G and A), but also being able to encode all amino acids. Hence slightly counter-intuitive



AAV library design
5. Demonstrate better downstream selection (human brain 

cell infectivity), that it was not specifically designed for.

ML 
library

currently 
used 
library

Presenter Notes
Presentation Notes
Minimize stop (which end in G and A), but also being able to encode all amino acids. Hence slightly counter-intuitive



Parting thoughts: ML + protein engineering
1. Exciting times!
2. Are we close to ChatGPT4 for protein engineering? No.
3. Far less data than in text, vision—will need to be much more 

clever for the answers to “emerge” (unless same functions).
4. AlphaFold2 and progeny will help advance protein engineering.
5. Predicting function (generally) will remain difficult problem for a 

long time.
6. Whiplash---this field is moving quickly, hard to tell what is real/ 

useful.
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