
Neural Networks

Jitendra Malik
CS 189

Mathematical Abstraction

Single layer neural network

Two layer neural network

Training a neural network

Training a single layer neural network
• For binary classification, a good choice of loss

function is the cross entropy. For regression,
use squared error

• We model the activation function g as a
sigmoid

• Finding w reduces to logistic regression!

Training a multi layer neural network

• We compute the gradient with respect to all the
weights: from input to hidden layer, and hidden
layer to output layer. This requires computing the
partial derivative of the error with respect to
each weight Wij

• The complexity of computing the gradient in the
naïve version is quadratic in the number of
weights. The back-propagation algorithm is a trick
that enables it to be computed in linear time.

The Chain Rule from Multivariable Calculus

The Chain Rule from Multivariable Calculus

Our goal

• To compute the partial derivative of error with
respect to Wij

• We will work this out separately for
connections feeding into the output layer and
then for any other layer.

• It turns out to be useful to define two
variables Sj (the summed input to a node j)
𝛿𝑗	(the	partial	derivative	of	error	w. r. t	Sj)

The Notation
Use superscripts to keep track of layers

Defining d
Partial derivative of error with respect to s, the summed input

Computing d for neuron in final layer
(this example is for squared loss, as in regression)

Computing d for neuron in intermediate layer
This is just the chain rule from calculus

Computing d for neuron in intermediate layer

Computing d for neuron in intermediate layer
Deriving the basic step of “backpropagation”

The full algorithm

Summary
• Note that we have computed all of the partial

derivatives in one backward pass. The time complexity
is proportional to number of weights

• We could have done this, one partial derivative at a
time, using finite differences. This is a good way to
debug your code for backprop. But it costs more,
because you need to repeat the computation as many
times as you have weights.

• The basic steps in backpropagation can be expressed as
matrix multiplications, and GPUs are great at that. This
is what enabled the scaling up of deep learning in the
2010s.

Basics of optimization

• Distinction between local and global minima
• Convex functions
• Gradient descent
• Gradient descent enables us to find local

minima, but for a convex function, a local
minimum is also a global minimum

Stationary points for functions of two variables

Gradient Descent

Two ways to characterize a “descent direction”

Taylor’s theorem from multivariable calculus

