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Mathematical Abstraction
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Smgle layer neural network
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Two layer neural network







Recall from multivariable calculus that the gradient of f is the vector
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The gradient is the direction which leads to a maximal increase of f. Similarly, the negative gradient
is the direction of steepest descent. Gradient descent uses this fact to construct an algorithm: at
every step, compute the gradient and follow that direction to minimize f.



Training a neural network
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Training a single layer neural network

* For binary classification, a good choice of loss
function is the cross entropy. For regression,

use squared error
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* Finding w reduces to logistic regression!
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Training a multi layer neural network

 We compute the gradient with respect to all the
weights: from input to hidden layer, and hidden
layer to output layer. This requires computing the
partial derivative of the error with respect to
each weight Wij

* The complexity of computing the gradient in the
naive version is quadratic in the number of
weights. The back-propagation algorithm is a trick
that enables it to be computed in linear time.



The Chain Rule from Multivariable Calculus

Given u(x, y) = X+ 2y where x(r, £) = r sin(f) and y(r,f) = sinz(t),

determine the value of ou / Or and Ou / Ot using the chain rule.



The Chain Rule from Multivariable Calculus

Given u(x, y) = X%+ 2y where x(r, t) = r sin(f) and y(7,f) = sin2(t), determine the value of Ou / Or and Ou / Ot using the chain

ou 8u8w+8u8y
or Oz dr Oy Or

and

ou 8u8:r:+8u3y

ot Or Ot Oy Ot

(2z)(r cos(t)) + (2)(2sin(t) cos(t))
(2rsin(t))(r cos(t)) + 4 sin(t) cos(t)
2(r* + 2) sin(t) cos(t)

= (r? + 2)sin(2t).

= (2z)(sin(t)) + (2)(0) = 2rsin®(t),




Our goal

* To compute the partial derivative of error with
respect to Wij

 We will work this out separately for

connections feeding into the output layer and
then for any other layer.

* |t turns out to be useful to define two
variables Sj (the summed input to a node )
0] (the partial derivative of error w.r. t §j)



The Notation

Use superscripts to keep track of layers
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Defining o
Partial derivative of error with respect to s, the summed input
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Computing o for neuron in final layer
(this example is for squared loss, as in regression)

Fv Yo frrdd [agax‘li';t‘w\j:lf;r-dz({\-(ﬁﬁ],jk)

Spocdentr, D L)~ ;%;{%( 9081 )-Y0)" |

= (g 4)-9's”) -0




Computing o for neuron in intermediate layer
This is just the chain rule from calculus
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Computing o for neuron in intermediate layer
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Computing o for neuron in intermediate layer
Deriving the basic step of “backpropagation”
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The full algorithm

We hoave (hwo a&w an Llaralive aﬁg«oﬂff\w N

%Jﬁz o@{’wﬁw on— oulfpS Lower | Ww-j@

it & o (@—~<)W8vmmatw
G

Once, Jhio WM cmeluded | we con uar
de(y) _ o () e
0 ] XL 5 comfple

L:/ : (L)

o Ao e vl reoped” Lo oy wRight™ Wy,




Summary

* Note that we have computed all of the partial
derivatives in one backward pass. The time complexity
is proportional to number of weights

 We could have done this, one partial derivative at a
time, using finite differences. This is a good way to
debug your code for backprop. But it costs more,
because you need to repeat the computation as many
times as you have weights.

* The basic steps in backpropagation can be expressed as
matrix multiplications, and GPUs are great at that. This
is what enabled the scaling up of deep learning in the
2010s.



Basics of optimization

Distinction between local and global minima
Convex functions
Gradient descent

Gradient descent enables us to find local
minima, but for a convex function, a local
minimum is also a global minimum



minimize,, f(w)
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Figure 1: Examples of minima of functions. In the first illustration, there is a unique minimizer. In the

second, there are an infinite number of minimizers, but all local minimizers are global minimizers. In the
third example, there are many local minimizers that are not global minimizers.



Stationary points for functions of two variables

local min local max saddle point
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Figure 3: Examples of stationary points.
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convex nonconvex

e A function f is convez if for all wy, we in R? and t € 0, 1],

f(tw1 + (1 — t)’LUQ) = tf(wl) + (1 — t)f(’wg) .



Recall from multivariable calculus that the gradient of f is the vector
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The gradient is the direction which leads to a maximal increase of f. Similarly, the negative gradient
is the direction of steepest descent. Gradient descent uses this fact to construct an algorithm: at
every step, compute the gradient and follow that direction to minimize f.



Gradient Descent

The gradient descent method follows the simple algorithmic procedure:
1. Choose 2o € R% and set k = 0
2. Choose tp >0 and set zp11 = xr —txVf(xr) and k =k + 1,

3. Repeat 2 until converged.



Two ways to characterize a “descent direction”

e v is a descent direction for f at xg if f(xo + tv) < f(xo) for some t > 0.

For continuously differentiable functions, it’s easy to tell if v is a descent direction: if vI V f(xg) <
0 then v is a descent direction.

To see this note that by Taylor’s theorem, f(zg+tv) = f(x0)+tV f(zo+tv) v for some € [0, t].
By continuity, if ¢ is small, we’ll have V f(zo + tv)? v < 0. Therefore f(xg + tv) < f(xo) and v is a
descent direction.

Note that among all directions with unit norm, the steepest descent possible is given when we
move in the direction of the negative gradient.



Taylor’s theorem from multivariable calculus

One of the most important theorems in calculus is Taylor’s Theorem, which allows us to ap-
proximate smooth functions by simple polynomials. The following simplified version of Taylor’s
Theorem is used throughout optimization. This form of Taylor’s theorem is sometimes called the
multivariable mean-value theorem. It states that

Theorem 1 (Taylor’s Theorem) If f is continuously differentiable, then
f(x) = f(zo) + Vf(te + (1 —t)xo)! (x — x0)  for some t € [0,1]

f(xo+tv) = f(xo)+tV f(x0 —I—tNU)T’U



