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1 Neural Networks
Neural networks are a class of compositional function approximators. They come in a variety of
shapes and sizes. In this class, we will only discuss feedforward neural networks, those networks
whose computations can be modeled by a directed acyclic graph.1 The most basic (but still com-
monly used) class of feedforward neural networks is the multilayer perceptron. Such a network
might be drawn as follows:

Computation flows left-to-right. The circles represent nodes, a.k.a. units or neurons, which are
loosely based on the behavior of actual neurons in the brain. Observe that the nodes are organized
into layers. The first (left-most) layer is called the input layer, the last (right-most) layer is called
the output layer, and any other layers (there is only one here, but there could be multiple) are
referred to as hidden layers. The dimensionality of the input and output layers is determined by
the function we want the network to compute. For a function from Rd to Rk, we should have d
input nodes and k output nodes. The number and sizes of the hidden layers are hyperparameters to
be chosen by the network designer.

Note that in the diagram above, each non-input layer has the following property: every node in that
layer is connected to every node in the previous layer. Layers that have this property are described
as fully connected.2 Each edge in the graph has an associated weight, which is the strength of the
connection from the input node in one layer to the node in the next layer. Each node computes a
weighted sum of its inputs, with these connection strengths being the weights, and then applies a

1 There are also recurrent neural networks whose computation graphs have cycles.
2 Later we will learn about convolutional layers, which have a different connectivity structure.
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nonlinear function which is variously referred to as the activation function or the nonlinearity.
Concretely, if wi denotes the weights and σi denotes the activation function of node i, it computes
the function

x 7→ σi(wi
>x)

Let us denote the number of (non-input) layers by L, the number of units in layer ` ∈ {0, . . . , L}
by n` (here n0 is the size of the input layer), and the nonlinearity for layer ` ∈ {1, . . . , L} by
σ` : Rn` → Rn` . The weights for every node in layer ` can be stacked (as rows) into a matrix of
weights W` ∈ R

n`×n`−1 . Then layer ` performs the computation

x 7→ σ`(W`x)

Since the output of each layer is passed as input to the next layer, the function represented by the
entire network can be written

x 7→ σL(WLσL−1(· · ·σ2(W2σ1(W1x)) · · · ))

This is what we mean when we describe neural networks as compositional.

Note that in most layers, the nonlinearity will be the same for each node within that layer, so it
makes sense to refer to a scalar function σ` : R→ R as “the” nonlinearity for layer `, and apply it
element-wise:

σ`(x) =


σ`(x1)
...

σ`(xn`)


The principle exception here is the softmax function σ : Rk → Rk defined by

σ(x)i =
exi∑k
j=1 ex j

which is often used to produce a discrete probability distribution over k classes. Note that every
entry of the softmax output depends on every entry of the input. Also, softmax preserves ordering,
in the sense that sorting the indices i = 1, . . . , k by the resulting value σ(x)i yields the same
ordering as sorting by the input value xi. In other words, more positive xi leads to larger σ(x)i.
This nonlinearity is used most commonly (but not always) at the output layer of the network.

1.1 Expressive power
It is the repeated combination of nonlinearities that gives deep neural networks their remarkable ex-
pressive power. Consider what happens when we remove the activation functions (or equivalently,
set them to the identity function): the function computed by the network is

x 7→WLWL−1 · · ·W2W1︸                   ︷︷                   ︸
=:W̃

x

which is linear in its input! Moreover, the size of the smallest layer restricts the rank of W̃, as

rank(W̃) ≤ min
`∈{1,...,L}

rank(W`) ≤ min
`∈{0,...,L}

n`
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Despite having many layers of computation, this class of networks is not very expressive; it can
only represent linear functions.

We would like to produce a class of networks that are universal function approximators. This
essentially means that given any continuous function, we can choose a network in this class such
that the output of the circuit can be made arbitrarily close to the output of the given function for all
given inputs. We make a more precise statement later.

A key observation is that piecewise-constant functions are universal function approximators:

The nonlinearity we use, then, is the step function:

σ(x) =

1 x ≥ 0
0 x < 0

We can build very complicated functions from this simple step function by combining translated
and scaled versions of it. Observe that

• If a, b ∈ R, the function x 7→ σ(a + bx) is a translated (and, depending on the sign of b,
possibly flipped) version of the step function:
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• If c , 0, the function x 7→ cσ(x) is a vertically scaled version of the step function.

It turns out that only one hidden layer is needed for universal approximation, and for simplicity
we assume a one-dimensional input. Thus from here on we consider networks with the following
structure:

The input x is one-dimensional, and the weight on x to node j is b j. We also introduce a constant
1, whose weight into node j is a j. (This is referred to as the bias, but it has nothing to do with bias
in the sense of the bias-variance tradeoff. It’s just there to provide the node with the ability to shift
its input.) The function implemented by the network is

h(x) =

k∑
j=1

c jσ(a j + b jx)

where k is the number of hidden units.

1.2 Choosing weights
With a proper choice of a j, b j, and c j, this function can approximate any continuous function we
want. But the question remains: given some target function, how do we choose these parameters
in the appropriate way?
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Let’s try a familiar technique: least squares. Assume we have training data {(xi, yi)}ni=1. We aim to
solve the optimization problem

min
a,b,c

n∑
i=1

(yi − h(xi))2

︸            ︷︷            ︸
f (a,b,c)

To run gradient descent, we need derivatives of the loss with respect to our optimization variables.
We compute via the chain rule

∂(yi − h(xi))2

∂c j
= −2(yi − h(xi))

∂h(xi)
∂c j

= 2(yi − h(xi))σ(a j + b jxi)

We see that if this particular step is “off”, as in σ(a j + b jxi) = 0, then

∂(yi − h(xi))2

∂c j
= 2(yi − h(xi))σ(a j + b jxi)︸        ︷︷        ︸

0

= 0

so no update will be made for that example. More egregiously, consider the derivatives with respect
to a j

3:
∂ f
∂a j

=

n∑
i=1

−2(yi − h(xi))
∂h(xi)
∂a j︸ ︷︷ ︸

0

= 0

and b j:
∂ f
∂b j

=

n∑
i=1

−2(yi − h(xi))
∂h(xi)
∂b j︸ ︷︷ ︸

0

= 0

Since gradient descent changes weights in proportion to their gradient, it will never modify a or b!
Even though the step function is useful for the purpose of showing the approximation capabilities
of neural networks, it is seldom used in practice because it cannot be trained by conventional
gradient-based methods.

The next simplest universal approximator is the class of piecewise-linear functions. Just as
piecewise-constant functions can be achieved by combinations of the step function as a nonlinear-
ity, piecewise-linear functions can be achieved by combinations of the rectified linear unit (ReLU)
function

σ(x) = max{0, x}
3 Technically, the derivative of σ is not defined at zero, where there is a discontinuity. However it is defined (and zero)

everywhere else. In practice, we will almost never hit the point of discontinuity because it is a set of measure zero.
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Depending on the weights a and b, our ReLUs can move to the left or right, increase or decrease
their slope, and flip direction.

Let us calculate the gradients again, assuming we replace the step functions by ReLUs:

∂ f
∂c j

=

n∑
i=1

−2(yi − h(xi)) max{0, a j + b jxi}

∂ f
∂a j

=

n∑
i=1

−2(yi − h(xi))c j
∂

∂a j
max{0, a j + b jxi} =

n∑
k=1

−2(yi − h(xi))c j


0 if a j + b jxi < 0

1 if a j + b jxi > 0


∂ f
∂b j

=

n∑
i=1

−2(yi − h(xi))c j
∂

∂b j
max{0, a j + b jxi} =

n∑
i=1

−2(yi − h(xi))c j


0 if a j + b jxi < 0

xi if a j + b jxi > 0


Crucially, we see that the gradient with respect to a and b is not uniformly zero, unlike with the
step function.

Later we will discuss backpropagation, a dynamic programming algorithm for efficiently com-
puting gradients with respect to a neural network’s parameters.

1.3 Neural networks are universal function approximators
The celebrated neural network universal approximation theorem, due to Kurt Hornik4, tells us that
neural networks are universal function approximators in the following sense.

4 See Approximation Capabilities of Multilayer Feedforward Networks.
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Theorem. Suppose σ : R → R is nonconstant, bounded, nondecreasing, and continuous5, and let
S ⊆ Rd be closed and bounded. Then for any continuous function f : S → R and any ε > 0, there
exists a neural network with one hidden layer containing finitely many nodes, which we can write

h(x) =

k∑
j=1

c jσ(a j + b j
>x)

such that
|h(x) − f (x)| < ε

for all x ∈ S .

There’s some subtlety in the theorem that’s worth noting. It says that for any given continuous
function, there exists a neural network of finite size that uniformly approximates the given func-
tion. However, it says nothing about how well any particular architecture you’re considering will
approximate the function. It also doesn’t tell us how to compute the weights.

It’s also worth pointing out that in the theorem, the network consists of just one hidden layer. In
practice, people find that using more layers works better.

5 Both ReLU and sigmoid satisfy these requirements.
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