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1 Generalization and Stability
In general, most classification problems are an optimization over the objective

min
w,b

1

n

n∑
i=1

L(yi,w
>xi − b) + λ‖w‖2

over some specified loss function and a possible regularization term (sometimes we may set λ =
0). The most simple loss function that we can optimize is the 0-1 step loss:

LSTEP(y,w
>x− b) =

{
1 y(w>x− b) < 0

0 y(w>x− b) ≥ 0

The 0-1 loss is 0 if x is correctly classified and 1 otherwise. Minimizing 1
n

∑n
i=1 L(yi,w

>xi − b)
directly minimizes classification error on the training set. However, the 0-1 loss is difficult to
optimize: it is neither convex nor differentiable (see Figure 1). Furthermore, if we exclude the
regularization term, we do not penalize the classifier for being close to the training points, which
leads to generalization issues.

Figure 1: Step (0-1) loss, hinge loss, and logistic loss. Logistic loss is convex and differentiable, hinge loss
is only convex, and step loss is neither.

Another loss function that we have seen is the logistic loss, which is used in logistic regression:

LLR(y,w
>x− b) = y ln

(
1

s(w>x− b)

)
+ (1− y) ln

(
1

1− s(w>x− b)

)
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The logistic loss is convex and differentiable, and is optimized using gradient descent methods.
The logistic loss is the basis for logistic regression, and it works well without regularization:

min
w,b

1

n

n∑
i=1

LLR(yi,w
>xi − b)

The hinge loss modifies the 0-1 loss to be convex. The points with y(w>x− b) ≥ 0 should remain
at 0 loss, but we may consider allowing a linear penalty “ramp” for misclassified points. This leads
us to the hinge loss, as illustrated in Figure 1:

LHINGE(y,w
>x− b) = max(1− y(w>x− b), 0)

The ramp ensures that misclassified points that are close to the boundary are penalized less than
misclassified points that are far from the boundary. The perceptron algorithm optimizes over the
sum of hinge losses contributed from all of the training points:

min
w,b

1

n

n∑
i=1

LHINGE(yi,w
>xi − b)

The SVM formulation is an optimization over the same problem, with the addition of a regulariza-
tion term:

min
w,b

1

n

n∑
i=1

LHINGE(yi,w
>xi − b) + λ‖w‖2

The regularization term allows for better generalization, in this case by penalizing choices of w for
which the margin is small.
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