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Fall 2020 Note 7

1 MLE and MAP for Regression (Part II)

The power of probabilistic thinking is that it allows us a way to model situations that arise and
adapt our approaches in a reasonably principled way. This is particularly true when it comes
to incorporating information about the situation that comes from the physical context of the data
gathering process. In this note, we will explore what happens as we vary our assumptions about the
noise in our data and the priors for our parameters, as well as the “importance” of certain training
points.

So far we have used MLE and MAP to justify the optimization formulation of OLS and ridge
regression, respectively. The MLE formulation assumes that the observation Yi is a noisy version
of the true underlying output:

Yi = f (xi) + Zi

where the noise for each datapoint is crucially i.i.d. The MAP formulation assumes that the model
parameter W j is according to an i.i.d. Gaussian prior

W j
iid
∼ N(µ j, σ

2
h)

.

So far, we have restricted ourselves to the case when the noise/parameters are i.i.d:

Z ∼ N(0, σ2I), W ∼ N(µW, σ
2
hI)

However, what about the case when Ni’s/W j’s are non-identical or dependent on one another? We
would like to explore the case when the observation noise and underlying parameters are jointly
Gaussian with arbitrary individual covariance matrices, but are independent of each other.

Z ∼ N(0,ΣZ), W ∼ N(µW,ΣW)

It turns out that via a change of coordinates, we can reduce these non-i.i.d. problems back to the
i.i.d. case and solve them using the original techniques we used to solve OLS and Ridge Regres-
sion! Changing coordinates is a powerful tool in thinking about machine learning.

1.1 Weighted Least Squares
The basic idea of weighted least squares is the following: we place more emphasis on the loss
contributed from certain data points over others - that is, we care more about fitting some data
points over others. It turns out that this weighted perspective is very useful as a building block
when we go beyond traditional least-squares problems.
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1.1.1 Optimization View

From an optimization perspective, the problem can be expressed as

ŵwls = arg min
w∈Rd

( n∑
i=1

ωi(yi − xi
>w)2

)
This objective is the same as OLS, except that each term in the sum is weighted by a positive
coefficient ωi. As always, we can vectorize this problem:

ŵwls = arg min
w∈Rd

(y − Xw)>Ω(y − Xw)

Where the i’th row X is xi
>, and Ω ∈ Rn×n is a diagonal matrix with Ωi,i = ωi.

We rewrite the WLS objective to an OLS objective:

ŵwls = arg min
w∈Rd

(y − Xw)>Ω(y − Xw)

= arg min
w∈Rd

(y − Xw)>Ω1/2Ω1/2(y − Xw)

= arg min
w∈Rd

(Ω1/2y −Ω1/2Xw)>(Ω1/2y −Ω1/2Xw)

= arg min
w∈Rd

‖Ω1/2y −Ω1/2Xw‖2

This formulation is identical to OLS except that we have scaled the data matrix and the observation
vector by Ω1/2, and we conclude that

ŵwls =

(
(Ω1/2X)>(Ω1/2X)

)−1(
Ω1/2X

)
>Ω1/2y = (X>ΩX)−1X>Ωy

1.1.2 Probabilistic View

As in MLE, we assume that our observations y are noisy, but now suppose that some of the yi’s are
more noisy than others. How can we take this into account in our learning algorithm so we can get
a better estimate of the weights? Our probabilistic model looks like

Yi = xi
>w + Zi

where the Zi’s are still independent Gaussians random variables, but not necessarily identical:
Zi ∼ N(0, σ2

i ). Jointly, we have that Z ∼ N(µZ,ΣZ), where

ΣZ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
...

...

0 · · · · · · σ2
n
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We can morph the problem into an MLE one by scaling the data to make sure all the Zi’s are
identically distributed, by dividing by σi:

Yi

σi
=

xi
>

σi
w +

Zi

σi

Note that the scaled noise entries are now i.i.d:
Zi

σi

iid
∼ N(0, 1)

Jointly, we can express this change of coordinates as

Σ
− 1

2
Z y ∼ N(Σ−

1
2

Z Xw,Σ−
1
2

Z ΣZΣ
−>2
Z ) = N(Σ−

1
2

Z Xw, I)

This change of variable is sometimes called the reparameterization trick. Now that the noise is
i.i.d. using the change of coordinates, we rewrite our original problem as a scaled MLE problem:

ŵwls = arg min
w∈Rd

 n∑
i=1

( yi
σi
−

xi
>

σi
w)2

2

 + n log
√

2π

= arg min
w∈Rd

n∑
i=1

1
σ2

i

(yi − xi
>w)2

The MLE estimate of this scaled problem is equivalent to the WLS estimate of the original prob-
lem:

ŵwls = (X>Σ−
1
2

Z Σ
− 1

2
Z X)−1X>Σ−

1
2

Z Σ
− 1

2
Z y = (X>Σ−1

Z X)−1X>Σ−1
Z y

As long as no σ is 0, ΣZ is invertible. Note that ωi from the optimization perspective is directly
related to σ2

i from the probabilistic perspective: ωi = 1
σ2

i
. Or at the level of matrices,Ω = ΣZ

−1. As

the variance σ2
i of the noise corresponding to data point i decreases, the weightωi increases: we are

more concerned about fitting data point i because it is likely to match the true underlying de-noised
point. Inversely, as the variance σ2

i increases, the weight ωi decreases: we are less concerned about
fitting data point i because it is noisy and should not be trusted.

1.2 Generalized Least Squares
Now let’s consider the case when the noise random variables are dependent on one another. We
have

Y = Xw + Z

where Z is now a jointly Gaussian random vector. That is,

Z ∼ N(0,ΣZ), Y ∼ N(Xw,ΣZ)

This problem is known as generalized least squares. Our goal is to maximize the probability of
our data over the set of possible w’s:

ŵgls = arg max
w∈Rd

1
√

det(ΣZ)
1

(
√

2π)n
e−

1
2 (y−Xw)>Σ−1

Z (y−Xw)
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= arg min
w∈Rd

(y − Xw)>Σ−1
Z (y − Xw)

The optimization problem is therefore given by

ŵgls = arg min
w∈Rd

(y − Xw)>Σ−1
Z (y − Xw)

Since ΣZ is symmetric, we can decompose it into its eigen structure using the spectral theorem:

ΣZ = Q


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
...

...

0 · · · · · · σ2
n

 Q>

where Q is orthonormal. As before with weighted least squares, our goal is to find an appropriate
linear transformation so that we can reduce the problem into the i.i.d. case.

Consider

Σ
− 1

2
Z = Q


1
σ1

0 · · · 0
0 1

σ2
· · · 0

...
...

...
...

0 · · · · · · 1
σn

 Q>

We can scale the data to morph the problem into an MLE problem with i.i.d. noise variables, by
premultiplying the data matrix X and the observation vector y by Σ−

1
2

Z . Jointly, we can express this
change of coordinates as

Σ
− 1

2
Z y ∼ N(Σ−

1
2

Z Xw,Σ−
1
2

Z ΣZΣ
−>2
Z ) = N(Σ−

1
2

Z Xw, I).

Consequently, in a very similar fashion to the independent noise problem, the MLE of the scaled
dependent noise problem is

ŵgls = (X>Σ−1
Z X)−1X>Σ−1

Z y.

1.3 “Ridge Regression” with Dependent Parameters
In the ordinary least squares (OLS) statistical model, we assume that the output Y is a linear
function of the input, plus some Gaussian noise. We take this one step further in MAP estimation,
where we assume that the weights are a random variable. The new statistical model is

Y = XW + Z

where Y and Z are n-dimensional random vectors, W is a d-dimensional random vector, and X is a
fixed n×d matrix. Note that random vectors are not notationally distinguished from matrices here,
so keep in mind what each symbol represents.
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We have seen that ridge regression can be derived by assuming a prior distribution on W in which
Wi are i.i.d. (univariate) Gaussian, or equivalently,

W ∼ N(0, I)

But more generally, we can allow W to be any multivariate Gaussian:

W ∼ N(µW,ΣW)

Recall that we can rewrite a multivariate Gaussian variable as an affine transformation of a standard
Gaussian variable:

W = Σ
1/2
WV + µW, V ∼ N(0, I)

Plugging this parameterization into our previous statistical model gives

Y = X(Σ
1/2
WV + µW) + Z

But this can be re-written
Y − XµW = XΣ1/2

WV + Z

which we see has the form of the statistical problem that underlies traditional Ridge Regression
with λ = 1, and therefore

v̂ = (Σ
>/2
WX>XΣ1/2

W + I)−1Σ
>/2
WX>(y − XµW)

However V is not what we care about – we need to convert back to the actual weights W in order to
make predictions. Since W is completely determined by V (assuming fixed mean and covariance),

ŵ = Σ
1/2
Wv̂ + µW

= µW + Σ
1/2
W(Σ

>/2
WX>XΣ1/2

W + I)−1Σ
>/2
WX>(y − XµW)

= µW + (X>X + Σ
− >/2
W Σ

− 1/2
W︸    ︷︷    ︸

Σ−1
W

)−1X>(y − XµW)

= µW + (X>X + Σ−1
W )−1X>(y − XµW)

Note that there are two terms: the prior mean µW, plus another term that depends on both the data
and the prior. The positive-definite precision matrix of W’s prior (Σ−1

W ) controls how the data fit
error affects our estimate. This is called Tikhonov regularization in the literature and generalizes
ridge regularization.

To gain intuition, let us consider the simplified case where

ΣW =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...

0 0 · · · σ2
d
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When the prior variance σ2
j for dimension j is large, the prior is telling us that W j may take on a

wide range of values. Thus we do not want to penalize that dimension as much, preferring to let
the data fit sort it out. And indeed the corresponding entry in Σ−1

W will be small, as desired.

Conversely if σ2
j is small, there is little variance in the value of W j, so W j ≈ µ j. As such we

penalize the magnitude of the data-fit contribution to Ŵ j more heavily.

If all the σ2
j are the same, then we have traditional ridge regularization.

1.3.1 Alternative derivation: directly conditioning jointly Gaussian random variables

In an explicitly probabilistic perspective, MAP with colored noise (and known X) can be expressed
as:

U,V iid
∼ N(0, I) (1)Y

W

 =

RZ XRW

0 RW

 UV
 (2)

where RZ and RW are relationships with W and Z, respectively. Note that the RW appears twice
because our model assumes Y = XW + noise, so if W = RWV, then we must have Y = XRWV +

noise.

We want to find the posterior W | Y = y. The formulation above makes it relatively easy to find
the posterior of Y conditioned on W (see below), but not vice-versa. So let’s pretend instead that

U′,V′ iid
∼ N(0, I)WY

 =

A B
0 D

 U′V′


Now W | Y = y is straightforward. Since V′ = D−1Y, the conditional mean and variance of
W | Y = y can be computed as follows:

E[W | Y = y] = E[AU′ + BV′ | Y = y]
= E[AU′ | Y = y] + E[BD−1Y | Y = y]
= AE[U′]︸︷︷︸

0

+E[BD−1Y | Y = y]

= BD−1y
Var(W | Y = y) = E[(W − E[W])(W − E[W])> | Y = y]

= E[(AU′ + BD−1Y − BD−1Y)(AU′ + BD−1Y − BD−1Y)> | Y = y]
= E[(AU′)(AU′)> | Y = y]
= E[AU′(U′)>A>]
= AE[U′(U′)>]︸      ︷︷      ︸

=Var(U′)=I

A>

= AA>
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In both cases above where we drop the conditioning on Y, we are using the fact U′ is independent
of V′ (and thus independent of Y = DV′). Therefore

W | Y = y ∼ N(BD−1y,AA>)

Recall that a Gaussian distribution is completely specified by its mean and covariance matrix. We
see that the covariance matrix of the joint distribution is

E

WY
 [

W> Y>
] =

A B
0 D

 A> 0
B> D>


=

AA>+ BB> BD>
DB> DD>


=

 ΣW ΣW,Y

ΣY,W ΣY


Matching the corresponding terms, we can express the conditional mean and variance of W | Y = y
in terms of these (cross-)covariance matrices:

BD−1Y = B D>D−>︸ ︷︷ ︸
I

D−1Y = (BD>)(DD>)−1Y = ΣW,YΣ
−1
Y Y

AA> = AA>+ BB>− BB>

= AA>+ BB>− B D>D−>︸ ︷︷ ︸
I

D−1D︸︷︷︸
I

B>

= AA>+ BB>− (BD>)(DD>)−1DB>

= ΣW − ΣW,YΣ
−1
Y ΣY,W

We can then apply the same reasoning to the original setup:

E

Y
W

 [
Y> W>

] =

RZRZ
>+ XRWRW

>X> XRWRW
>

RWRW
>X> RWRW

>


=

 ΣY ΣY,W

ΣW,Y ΣW


Therefore after defining ΣZ = RZRZ

>, we can read off

ΣW = RWRW
>

ΣY = ΣZ + XΣWX>

ΣY,W = XΣW

ΣW,Y = ΣWX>

Plugging this into our estimator yields

ŵ = E[W | Y = y]
= ΣW,YΣ

−1
Y y
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= ΣWX>(ΣZ + XΣWX>)−1y

One may be concerned because this expression does not take the form we expect – the inverted
matrix is hitting y directly, unlike in other solutions we’ve seen. Although this form will turn out
to be quite informative when we introduce the idea of the kernel trick in machine, learning, it is
still disconcertingly different from what we are used to.

However, by using a lot of algebra together with the Woodbury matrix identity1, it turns out that
we can rewrite this expression as

ŵ = (X>Σ−1
Z X + Σ−1

W )−1X>Σ−1
Z y

which looks more familiar. In fact, you can recognize this as the general solution when we have
both a generic Gaussian prior on the parameters and colored noise in the observations.

1.4 Summary of Linear Gaussian Statistical Models
We have seen a number of related linear models, with varying assumptions about the randomness
in the observations and the weights. We summarize these below:

W
Z

N(0, I) N(0,ΣZ)

No prior ŵols = (X>X)−1X>y ŵgls = (X>Σ−1
Z X)−1X>Σ−1

Z y
N(0, λ−1I) ŵridge = (X>X + λI)−1X>y (X>Σ−1

Z X + λI)−1X>Σ−1
Z y

N(µW,ΣW) µW + (X>X + Σ−1
W )−1X>(y − XµW) µW + (X>Σ−1

Z X + Σ−1
W )−1X>Σ−1

Z (y − XµW)

1 (A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1
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