1 Back to Basics: Linear Algebra

Let \(X \in \mathbb{R}^{m \times n} \). We do not assume that \(X \) has full rank.

(a) Give the definition of the rowspace, column space, and nullspace of \(X \).

Solution: The rowspace is the span (or the set of all linear combinations) of the rows of \(X \), the column space is the span of the columns of \(X \), also known as \(\text{Range}(X) \), and the nullspace is the set of vectors \(v \) such that \(Xv = 0 \), also known as \(\text{N}(X) \).

(b) Check the following facts:

(a) The rowspace of \(X \) is the column space of \(X^\top \), and vice versa.

Solution: The rows of \(X \) are the columns of \(X^\top \), and vice versa.

(b) The nullspace of \(X \) and the row space of \(X \) are orthogonal complements.

Solution: \(v \) is in the nullspace of \(X \) if and only if \(Xv = 0 \), which is true if and only if for every row \(X_i \) of \(X \), \(\langle X_i, v \rangle = 0 \). This is precisely the condition that \(v \) is perpendicular to each row of \(X \). This means that \(v \) is in the nullspace of \(X \) if and only if \(v \) is in the orthogonal complement of the span of the rows of \(X \), i.e. the orthogonal complement of the rowspace of \(X \).

(c) The nullspace of \(X^\top X \) is the same as the nullspace of \(X \). Hint: if \(v \) is in the nullspace of \(X^\top X \), then \(v^\top X^\top Xv = 0 \).

Solution: If \(v \) is in the nullspace of \(X \), then \(X^\top Xv = X^\top 0 = 0 \). On the other hand, if \(v \) is in the nullspace of \(X^\top X \), then \(v^\top X^\top Xv = v^\top 0 = 0 \). Then, \(v^\top X^\top Xv = \|Xv\|_2^2 = 0 \), which implies that \(Xv = 0 \).

(d) The column space and rowspace of \(X^\top X \) are the same, and are equal to the rowspace of \(X \). Hint: Use the relationship between nullspace and rowspace.

Solution: \(X^\top X \) is symmetric, and by part (a),

\[
\text{rowspace}(X^\top X) = \text{column space}((X^\top X)^\top) = \text{column space}(X^\top X)
\]

By part (b), (c), then (b) again,

\[
\text{rowspace}(X^\top X) = \text{nullspace}(X^\top X)^\perp = \text{nullspace}(X)^\perp = \text{rowspace}(X),
\]

where \((\cdot)^\perp\) denotes orthogonal complement.
2 Probability Review

There are n archers all shooting at the same target (bulls-eye) of radius 1. Let the score for a particular archer be defined to be the distance away from the center (the lower the score, the better, and 0 is the optimal score). Each archer’s score is independent of the others, and is distributed uniformly between 0 and 1. What is the expected value of the worst (highest) score?

(a) Define a random variable Z that corresponds with the worst (highest) score.

Solution: $Z = \max\{X_1, \ldots, X_n\}$.

(b) Derive the Cumulative Distribution Function (CDF) of Z.

Solution:

$$F(z) = P(Z \leq z) = P(X_1 \leq z) P(X_2 \leq z) \cdots P(X_n \leq z) = \prod_{i=1}^{n} P(X_i \leq z)$$

$$= \begin{cases}
 0 & \text{if } z < 0, \\
 z^n & \text{if } 0 \leq z \leq 1, \\
 1 & \text{if } z > 1.
\end{cases}$$

(c) Derive the Probability Density Function (PDF) of Z.

Solution:

$$f(z) = \frac{d}{dz} F(z) = \begin{cases}
 nz^{n-1} & \text{if } 0 \leq z \leq 1, \\
 0 & \text{otherwise}.
\end{cases}$$

(d) Calculate the expected value of Z.

Solution:

$$E[Z] = \int_{-\infty}^{\infty} z f(z) \, dz = \int_{0}^{1} zn^{n-1} \, dz = n \int_{0}^{1} z^n \, dz = \frac{n}{n+1}.$$
Below, \(\mathbf{x} \in \mathbb{R}^d \) means that \(\mathbf{x} \) is a \(d \times 1 \) column vector with real-valued entries. Likewise, \(A \in \mathbb{R}^{d \times d} \) means that \(A \) is a \(d \times d \) matrix with real-valued entries. In this course, we will by convention consider vectors to be column vectors.

Consider \(\mathbf{x}, \mathbf{w} \in \mathbb{R}^d \) and \(A \in \mathbb{R}^{d \times d} \). In the following questions, \(\frac{\partial}{\partial \mathbf{x}} \) denotes the derivative with respect to \(\mathbf{x} \), while \(\nabla \mathbf{x} \) denotes the gradient with respect to \(\mathbf{x} \).

Solution: Let us first understand the definition of the derivative. Let \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) denote a scalar function. Then the derivative \(\frac{\partial f}{\partial \mathbf{x}} \) is an operator that can help find the change in function value at \(\mathbf{x} \), up to first order, when we add a little perturbation \(\Delta \in \mathbb{R}^d \) to \(\mathbf{x} \). That is,

\[
f(\mathbf{x} + \Delta) = f(\mathbf{x}) + \frac{\partial f}{\partial \mathbf{x}} \Delta + o(\|\Delta\|) \tag{1}
\]

where \(o(\|\Delta\|) \) stands for any term \(r(\Delta) \) such that \(r(\Delta)/\|\Delta\| \rightarrow 0 \) as \(\|\Delta\| \rightarrow 0 \). An example of such a term is a quadratic term like \(\|\Delta\|^2 \). Let us quickly verify that \(r(\Delta) = \|\Delta\|^2 \) is indeed an \(o(\|\Delta\|) \) term. As \(\|\Delta\| \rightarrow 0 \), we have

\[
r(\Delta)/\|\Delta\| = \frac{\|\Delta\|^2}{\|\Delta\|} = \|\Delta\| \rightarrow 0,
\]

thereby verifying our claim. As a rule of thumb, any term that has a higher-order dependence on \(\|\Delta\| \) than linear is \(o(\|\Delta\|) \) and is ignored to compute the derivative.

We call \(\frac{\partial f}{\partial \mathbf{x}} \) the **derivative of \(f \) at \(\mathbf{x} \)**. Sometimes we use \(\frac{df}{dx} \) but we also use \(\partial \) to indicate that \(f \) may depend on some other variable too. (But to define \(\frac{df}{dx} \), we study changes in \(f \) with respect to changes in only \(\mathbf{x} \).)

Since \(\Delta \) is a column vector the vector \(\frac{\partial f}{\partial \mathbf{x}} \) should be a row vector so that \(\frac{\partial f}{\partial \mathbf{x}} \Delta \) is a scalar. The gradient of \(f \) at \(\mathbf{x} \) is defined to be the transpose of this derivative. That is \(\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial \mathbf{x}} \right)^T \).

We now write down some formulas that would be helpful to compute different derivatives in various settings where a solution via first principle might be hard to compute. We will also distinguish between the derivative, gradient, Jacobian, and Hessian in our notation.

1. Let \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) denote a scalar function. Let \(\mathbf{x} \in \mathbb{R}^d \) denote a vector and \(A \in \mathbb{R}^{d \times d} \) denote a matrix. We have

\[
\frac{\partial f}{\partial \mathbf{x}} \in \mathbb{R}^{1 \times d}
\]

such that

\[
\frac{\partial f}{\partial \mathbf{x}} = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_d} \right] \tag{2}
\]

1. Good resources for matrix calculus are:
 - The Matrix Cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
 - Khan Academy: https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
 - YouTube: https://www.youtube.com/playlist?list=PLSQl0a2vh4HC5feHa6RC5c0wbRTx56nF7

2. Note that \(r(\Delta) = \sqrt{\|\Delta\|} \) is not an \(o(\|\Delta\|) \) term. Since for this case, \(r(\Delta)/\|\Delta\| = 1/\sqrt{\|\Delta\|} \rightarrow \infty \) as \(\|\Delta\| \rightarrow 0 \).
\[\nabla_x f = \left(\frac{\partial f}{\partial x} \right)^\top = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix}. \] (3)

2. Let \(y : \mathbb{R}^{m \times n} \to \mathbb{R} \) be a scalar function defined on the space of \(m \times n \) matrices. Then its derivative is an \(n \times m \) matrix and is given by

\[\frac{\partial y}{\partial B} \in \mathbb{R}^{n \times m} \text{ such that } \left[\frac{\partial y}{\partial B} \right]_{ij} = \frac{\partial y}{\partial B_{ji}}. \] (4)

3. For \(z : \mathbb{R}^d \to \mathbb{R}^k \) a vector-valued function; its derivative \(\frac{\partial z}{\partial x} \) is an operator such that it can help find the change in function value at \(x \), up to first order, when we add a little perturbation \(\Delta \) to \(x \):

\[z(x + \Delta) = z(x) + \frac{\partial z}{\partial x} \Delta + o(\|\Delta\|). \] (5)

A formula for the same can be derived as

\[J(z) = \frac{\partial z}{\partial x} \in \mathbb{R}^{k \times d} = \begin{bmatrix} \frac{\partial z_1}{\partial x_1} & \frac{\partial z_2}{\partial x_1} & \cdots & \frac{\partial z_k}{\partial x_1} \\ \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} & \cdots & \frac{\partial z_k}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial z_1}{\partial x_d} & \frac{\partial z_2}{\partial x_d} & \cdots & \frac{\partial z_k}{\partial x_d} \end{bmatrix}, \] (6)

that is \[[J(z)]_{ij} = \frac{\partial z_i}{\partial x_j}. \] (7)

4. However, the Hessian of \(f \) is defined as

\[H(f) = \nabla^2 f(x) = J(\nabla f)^\top = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \frac{\partial^2 f}{\partial x_d \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_d \partial x_d} \end{bmatrix}. \] (8)

For sufficiently smooth functions (when the mixed derivatives are equal), the Hessian is a symmetric matrix and in such cases (which cover a lot of cases in daily use) the convention does not matter.

5. The following linear algebra formulas are also helpful:

\[(Ax)_i = \sum_{j=1}^{d} A_{ij}x_j, \quad \text{and,} \]

\[(A^\top x)_i = \sum_{j=1}^{d} A_{ji}^\top x_j = \sum_{j=1}^{d} A_{ji}x_j. \] (9) (10)
Derive the following derivatives.

(a) $\frac{\partial w^\top x}{\partial x}$ and $\nabla_x (w^\top x)$

Solution:
The idea is to use $f = w^\top x$ and apply equation (2). Note that $w^\top x = \sum_j w_j x_j$. Hence, we have

$$\frac{\partial f}{\partial x_i} = \frac{\partial \sum_j w_j x_j}{\partial x_i} = w_i.$$

Thus, we find that

$$\frac{\partial w^\top x}{\partial x} = \frac{\partial \sum_j w_j x_j}{\partial x} = [\frac{\partial \sum_j w_j x_j}{\partial x_1}, \frac{\partial \sum_j w_j x_j}{\partial x_2}, \ldots, \frac{\partial \sum_j w_j x_j}{\partial x_d}] = [w_1, w_2, \ldots, w_d] = w^\top.$$

And $\nabla_x (w^\top x) = \frac{\partial w^\top x}{\partial x} = w$.

(b) $\frac{\partial (w^\top Ax)}{\partial x}$ and $\nabla_x (w^\top Ax)$

Solution: We discuss two ways to solve the problem.

Using part (a): Note that we can solve this question simply by using part (a). We substitute $u = A^\top w$ to obtain that $f(x) = u^\top x$. Now from part (a), we conclude that

$$\frac{\partial (u^\top x)}{\partial x} = u^\top = w^\top A \quad \text{and} \quad \nabla_x (w^\top Ax) = \left(\frac{\partial (w^\top Ax)}{\partial x} \right)^\top = A^\top w.$$

Using the formula (2): The idea is to use $f(x) = w^\top Ax$, and apply equation (2). Using the fact that $w^\top Ax = \sum_{i=1}^d \sum_{j=1}^d w_i A_{ij} x_j$, we find that

$$\frac{\partial f}{\partial x_j} = \frac{\partial \sum_{i=1}^d \sum_{j=1}^d w_i A_{ij} x_j}{\partial x_j} = \frac{\partial \sum_{i=1}^d x_j (\sum_{i=1}^d A_{ij} w_i)}{\partial x_j} = \sum_{i=1}^d A_{ij} w_i = \sum_{i=1}^d A^\top_{ij} w_i = (A^\top w)_j,$$

where in the last step we have used equation (10). Consequently, we have

$$\frac{\partial (w^\top Ax)}{\partial x} = [(A^\top w)_1, (A^\top w)_2, \ldots, (A^\top w)_d] = (A^\top w)^\top = w^\top A,$$

and

$$\nabla_x (w^\top Ax) = \left(\frac{\partial (w^\top Ax)}{\partial x} \right)^\top = A^\top w.$$

(c) $\frac{\partial (w^\top Ax)}{\partial w}$ and $\nabla_w (w^\top Ax)$

Solution: We discuss two ways to solve the problem.
Using part (a) and (b): Note that we can solve this question simply by using part (a) and (b). We have $(w^\top Ax) = (x^\top A^\top w)$, since for a scalar α, we have $\alpha = \alpha^\top$. And in part (b), reversing the roles of x and w, we obtain that

$$ \frac{\partial w^\top Ax}{\partial w} = \frac{\partial x^\top A^\top w}{\partial w} = x^\top A^\top $$ and $\nabla_w (w^\top Ax) = \left(\frac{\partial w^\top Ax}{\partial w} \right)^\top = Ax$.

Using the formula (2): Using a similar idea as in the previous part, we have

$$ \frac{\partial f}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\sum_{i=1}^d \sum_{j=1}^d w_i A_{ij} x_j \right) = \frac{\partial}{\partial w_i} \left(\sum_{i=1}^d (\sum_{j=1}^d A_{ij} x_j) \right) = \sum_{j=1}^d A_{ij} x_j = (Ax)_i, $$

where in the last step we have used equation (9). Consequently, we have

$$ \frac{\partial (w^\top Ax)}{\partial w} = \left[(Ax)_1, (Ax)_2, \ldots, (Ax)_d \right] = (Ax)^\top = x^\top A^\top, $$

and

$$ \nabla_w (w^\top Ax) = \left(\frac{\partial (w^\top Ax)}{\partial w} \right)^\top = (x^\top A^\top)^\top = Ax. $$

(d) $\frac{\partial (w^\top Ax)}{\partial A}$ and $\nabla_A (w^\top Ax)$

Solution:

Using the formula (4): We use $y = w^\top Ax$ and apply the formula (4). We have $w^\top Ax = \sum_{i=1}^d \sum_{j=1}^d w_i A_{ij} x_j$ and hence

$$ \left[\frac{\partial (w^\top Ax)}{\partial A} \right]_{ij} = \frac{\partial (w^\top Ax)}{\partial A_{ji}} = w_j x_i = (xw^\top)_{ij}. $$

Consequently, we have

$$ \frac{\partial (w^\top Ax)}{\partial A} = [(xw^\top)_{ij}] = xw^\top, $$

and thereby $\nabla_A (w^\top Ax) = wx^\top$.

(e) $\frac{\partial (x^\top Ax)}{\partial x}$ and $\nabla_x (x^\top Ax)$

Solution:

We provide two ways to solve this problem.
Using the formula (2): We have \(\mathbf{x}^\top \mathbf{A} \mathbf{x} = \sum_{i=1}^{d} \sum_{j=1}^{d} x_i A_{ij} x_j \). For any given index \(\ell \), we have

\[
\mathbf{x}^\top \mathbf{A} \mathbf{x} = A_{\ell \ell} x_\ell^2 + \sum_{j \neq \ell} (A_{\ell j} + A_{j \ell}) x_j + \sum_{i \neq \ell} \sum_{j \neq \ell} x_i A_{ij} x_j.
\]

Thus we have

\[
\frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial x_\ell} = 2 A_{\ell \ell} x_\ell + \sum_{j \neq \ell} (A_{\ell j} + A_{j \ell}) x_j = \sum_{j=1}^{d} (A_{\ell j} + A_{j \ell}) x_j = ((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})_\ell.
\]

And consequently

\[
\frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \left[\frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial x_1}, \frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial x_2}, \ldots, \frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial x_d} \right] = \left[((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})_1, ((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})_2, \ldots, ((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})_d \right] = ((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})^\top = \mathbf{x}^\top (\mathbf{A} + \mathbf{A}^\top),
\]

and hence \(\nabla_\mathbf{x} (\mathbf{x}^\top \mathbf{A} \mathbf{x}) = \left[\frac{\partial (\mathbf{x}^\top \mathbf{A} \mathbf{x})}{\partial x} \right]^\top = (\mathbf{A} + \mathbf{A}^\top) \mathbf{x} \).

Using the product rule: Let

\[
g(\mathbf{x}) = \mathbf{x},
\]

\[
h(\mathbf{x}) = \mathbf{A} \mathbf{x}.
\]

We have that

\[
\frac{dg(\mathbf{x})}{d\mathbf{x}} = \mathbf{I},
\]

\[
\frac{dh(\mathbf{x})}{d\mathbf{x}} = \mathbf{A}.
\]

The product rule says that

\[
\frac{d(\mathbf{x}^\top \mathbf{A} \mathbf{x})}{d\mathbf{x}} = \frac{d(g(\mathbf{x})^\top h(\mathbf{x}))}{d\mathbf{x}} = g(\mathbf{x})^\top \frac{dh(\mathbf{x})}{d\mathbf{x}} + h(\mathbf{x})^\top \frac{dg(\mathbf{x})}{d\mathbf{x}} = \mathbf{x}^\top \mathbf{A} + \mathbf{x}^\top \mathbf{A}^\top \mathbf{I} = \mathbf{x}^\top (\mathbf{A} + \mathbf{A}^\top),
\]

and hence \(\nabla_\mathbf{x} (\mathbf{x}^\top \mathbf{A} \mathbf{x}) = (\mathbf{A} + \mathbf{A}^\top) \mathbf{x} \)

(f) \(\nabla_\mathbf{x}^2 (\mathbf{x}^\top \mathbf{A} \mathbf{x}) \)

Solution:
Using the formula (8): A straight forward computation yields that

\[\frac{\partial^2 f}{\partial x_i \partial x_j} = A_{ij} + A_{ji} \]

and hence

\[\nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j} \right] = [(A_{ij} + A_{ji})] = A + A^\top. \]