1 Back to Basics: Linear Algebra

Let $X \in \mathbb{R}^{m \times n}$. We do not assume that X has full rank.

(a) Give the definition of the rowspace, columnspace, and nullspace of X.

Solution: The rowspace is the span (or the set of all linear combinations) of the rows of X, the columnspace is the span of the columns of X, also known as $\text{Range}(X)$, and the nullspace is the set of vectors v such that $Xv = 0$, also known as $\mathcal{N}(X)$.

(b) Check (write an informal proof for) the following facts:

(a) The rowspace of X is the columnspace of X^\top, and vice versa.

Solution: The rows of X are the columns of X^\top, and vice versa.

(b) The nullspace of X and the rowspace of X are orthogonal complements.

Solution: v is in the nullspace of X if and only if $Xv = 0$, which is true if and only if for every row X_i of X, $\langle X_i, v \rangle = 0$. This is precisely the condition that v is perpendicular to each row of X. This means that v is in the nullspace of X if and only if v is in the orthogonal complement of the span of the rows of X, i.e., the orthogonal complement of the rowspace of X.

(c) The nullspace of $X^\top X$ is the same as the nullspace of X. *Hint: if v is in the nullspace of $X^\top X$, then $v^\top X^\top X v = 0$.*

Solution: If v is in the nullspace of X, then $X^\top Xv = X^\top 0 = 0$. On the other hand, if v is in the nullspace of $X^\top X$, then $v^\top X^\top Xv = v^\top 0 = 0$. Then, $v^\top X^\top Xv = \|Xv\|_2^2 = 0$, which implies that $Xv = 0$.

(d) The columnspace and rowspace of $X^\top X$ are the same, and are equal to the rowspace of X. *Hint: Use the relationship between nullspace and rowspace.*

Solution: $X^\top X$ is symmetric, and by part (a),

$$\text{rowspace}(X^\top X) = \text{columnspace}((X^\top X)^\top) = \text{columnspace}(X^\top X)$$

By part (b), (c), then (b) again,

$$\text{rowspace}(X^\top X) = \text{nullspace}(X^\top X)^\perp = \text{nullspace}(X)^\perp = \text{rowspace}(X),$$

where $(\cdot)^\perp$ denotes orthogonal complement.
2 Probability Review

There are \(n \) archers all shooting at the same target (bulls-eye) of radius 1. Let the score for a particular archer be defined to be the distance away from the center (the lower the score, the better, and 0 is the optimal score). Each archer’s score is independent of the others, and is distributed uniformly between 0 and 1. What is the expected value of the worst (highest) score?

(a) Define a random variable \(Z \) that corresponds with the worst (highest) score.

\[\text{Solution: } Z = \max\{X_1, \ldots, X_n\}. \]

(b) Derive the Cumulative Distribution Function (CDF) of \(Z \).

\[F(z) = P(Z \leq z) = P(X_1 \leq z) P(X_2 \leq z) \cdots P(X_n \leq z) = \prod_{i=1}^{n} P(X_i \leq z) = \begin{cases} 0 & \text{if } z < 0, \\ z^n & \text{if } 0 \leq z \leq 1, \\ 1 & \text{if } z > 1. \end{cases} \]

(c) Derive the Probability Density Function (PDF) of \(Z \).

\[f(z) = \frac{d}{dz} F(z) = \begin{cases} nz^{n-1} & \text{if } 0 \leq z \leq 1, \\ 0 & \text{otherwise}. \end{cases} \]

(d) Calculate the expected value of \(Z \).

\[E[Z] = \int_{-\infty}^{\infty} z f(z) \, dz = \int_{0}^{1} z^n z^{n-1} \, dz = n \int_{0}^{1} z^n \, dz = \frac{n}{n + 1}. \]
3 Vector Calculus

Below, \(\mathbf{x} \in \mathbb{R}^d \) means that \(\mathbf{x} \) is a \(d \times 1 \) column vector with real-valued entries. Likewise, \(\mathbf{A} \in \mathbb{R}^{d \times d} \) means that \(\mathbf{A} \) is a \(d \times d \) matrix with real-valued entries. In this course, we will by convention consider vectors to be column vectors.

Consider \(\mathbf{x}, \mathbf{w} \in \mathbb{R}^d \) and \(\mathbf{A} \in \mathbb{R}^{d \times d} \). In the following questions, \(\frac{\partial f}{\partial \mathbf{x}} \) denotes the derivative with respect to \(\mathbf{x} \), while \(\nabla_{\mathbf{x}} f \) denotes the gradient with respect to \(\mathbf{x} \). Recall that \(\nabla_{\mathbf{x}} f = \left(\frac{\partial f}{\partial \mathbf{x}} \right)^\top \).

Solution: Let us first understand the definition of the derivative. Let \(f : \mathbb{R}^d \to \mathbb{R} \) denote a scalar function. Then the derivative \(\frac{\partial f}{\partial \mathbf{x}} \) is an operator that can help find the change in function value at \(\mathbf{x} \), up to first order, when we add a little perturbation \(\Delta \in \mathbb{R}^d \) to \(\mathbf{x} \). That is,

\[
f(\mathbf{x} + \Delta) = f(\mathbf{x}) + \frac{\partial f}{\partial \mathbf{x}}\Delta + o(||\Delta||)
\]

where \(o(||\Delta||) \) stands for any term \(r(\Delta) \) such that \(r(\Delta)/||\Delta|| \to 0 \) as \(||\Delta|| \to 0 \). An example of such a term is a quadratic term like \(||\Delta||^2 \). Let us quickly verify that \(r(\Delta) = ||\Delta||^2 \) is indeed an \(o(||\Delta||) \) term. As \(||\Delta|| \to 0 \), we have

\[
\frac{r(\Delta)}{||\Delta||} = \frac{||\Delta||^2}{||\Delta||} = ||\Delta|| \to 0,
\]

thereby verifying our claim. As a rule of thumb, any term that has a higher-order dependence on \(||\Delta|| \) than linear is \(o(||\Delta||) \) and is ignored to compute the derivative\(^1\).

We call \(\frac{\partial f}{\partial \mathbf{x}} \) the **derivative of \(f \) at \(\mathbf{x} \)**. Sometimes we use \(\frac{df}{dx} \) but we also use \(\partial \) to indicate that \(f \) may depend on some other variable too. (But to define \(\frac{\partial f}{\partial \mathbf{x}} \), we study changes in \(f \) with respect to changes in only \(\mathbf{x} \).)

Since \(\Delta \) is a column vector the vector \(\frac{\partial f}{\partial \mathbf{x}} \) should be a row vector so that \(\frac{\partial f}{\partial \mathbf{x}}\Delta \) is a scalar. The gradient of \(f \) at \(\mathbf{x} \) is defined to be the transpose of this derivative. That is \(\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial \mathbf{x}} \right)^\top \).

We now write down some formulas that would be helpful to compute different derivatives in various settings where a solution via first principle might be hard to compute. We will also distinguish between the derivative, gradient, Jacobian, and Hessian in our notation.

1. Let \(f : \mathbb{R}^d \to \mathbb{R} \) denote a scalar function. Let \(\mathbf{x} \in \mathbb{R}^d \) denote a vector and \(\mathbf{A} \in \mathbb{R}^{d \times d} \) denote a matrix. We have

\[
\frac{\partial f}{\partial \mathbf{x}} \in \mathbb{R}^{1 \times d} \quad \text{such that} \quad \frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_d} \end{bmatrix}
\]

\(^1\)Good resources for matrix calculus are:
- The Matrix Cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
- Khan Academy: https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
- YouTube: https://www.youtube.com/playlist?list=PLSQl0a2vh4HC5feHa6Rc5C0wbRTx56nF7

\(^2\)Note that \(r(\Delta) = \sqrt{||\Delta||} \) is not an \(o(||\Delta||) \) term. Since for this case, \(r(\Delta)/||\Delta|| = 1/\sqrt{||\Delta||} \to \infty \) as \(||\Delta|| \to 0 \).
\[\nabla_x f = \left(\frac{\partial f}{\partial x} \right)^\top = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix}. \]

(3)

2. Let \(y : \mathbb{R}^{m \times n} \rightarrow \mathbb{R} \) be a scalar function defined on the space of \(m \times n \) matrices. Then its derivative is an \(n \times m \) matrix and is given by

\[\frac{\partial y}{\partial \mathbf{B}} \in \mathbb{R}^{n \times m} \text{ such that } \frac{\partial y}{\partial \mathbf{B}}_{ij} = \frac{\partial y}{\partial \mathbf{B}_{ji}}. \]

(4)

3. For \(z : \mathbb{R}^d \rightarrow \mathbb{R}^k \) a vector-valued function; its derivative \(\frac{\partial z}{\partial \mathbf{x}} \) is an operator such that it can help find the change in function value at \(\mathbf{x} \), up to first order, when we add a little perturbation \(\Delta \) to \(\mathbf{x} \):

\[z(\mathbf{x} + \Delta) = z(\mathbf{x}) + \frac{\partial z}{\partial \mathbf{x}} \Delta + o(\|\Delta\|). \]

(5)

A formula for the same can be derived as

\[J(z) = \frac{\partial z}{\partial \mathbf{x}} \in \mathbb{R}^{k \times d} = \begin{bmatrix} \frac{\partial z_1}{\partial x_1} & \frac{\partial z_1}{\partial x_2} & \cdots & \frac{\partial z_1}{\partial x_d} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} & \cdots & \frac{\partial z_2}{\partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial z_k}{\partial x_1} & \frac{\partial z_k}{\partial x_2} & \cdots & \frac{\partial z_k}{\partial x_d} \end{bmatrix}, \]

(6)

that is \([J(z)]_{ij} = \frac{\partial z_i}{\partial x_j} \).

(7)

4. However, the Hessian of \(f \) is defined as

\[H(f) = \nabla^2 f(\mathbf{x}) = J(\nabla f)^\top = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \frac{\partial^2 f}{\partial x_d \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix}. \]

(8)

For sufficiently smooth functions (when the mixed derivatives are equal), the Hessian is a symmetric matrix and in such cases (which cover a lot of cases in daily use) the convention does not matter.

5. The following linear algebra formulas are also helpful:

\[(\mathbf{A} \mathbf{x})_i = \sum_{j=1}^{d} A_{ij} x_j, \quad \text{and,} \]

\[(\mathbf{A}^\top \mathbf{x})_j = \sum_{i=1}^{d} A^\top_{ji} x_j = \sum_{j=1}^{d} A_{ji} x_j. \]

(9)

(10)
Derive the following derivatives.

(a) \(\frac{\partial w^T x}{\partial x} \) and \(\nabla_x (w^T x) \)

Solution:

The idea is to use \(f = w^T x \) and apply equation (2). Note that \(w^T x = \sum_j w_j x_j \). Hence, we have

\[
\frac{\partial f}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\sum_j w_j x_j \right) = w_i.
\]

Thus, we find that

\[
\frac{\partial w^T x}{\partial x} = \frac{\partial}{\partial x} \left(\sum_j w_j x_j \right) = \begin{bmatrix} \frac{\partial}{\partial x_1} \sum_j w_j x_j, & \ldots, & \frac{\partial}{\partial x_d} \sum_j w_j x_j \end{bmatrix} = \begin{bmatrix} w_1, w_2, \ldots, w_d \end{bmatrix} = w^T.
\]

And \(\nabla_x (w^T x) = \frac{\partial w^T x}{\partial x} = w \).

(b) \(\frac{\partial (w^T A x)}{\partial x} \) and \(\nabla_x (w^T A x) \)

Solution: We discuss two ways to solve the problem.

Using part (a): Note that we can solve this question simply by using part (a). We substitute \(u = A^T w \) to obtain that \(f(x) = u^T x \). Now from part (a), we conclude that

\[
\frac{\partial (w^T A x)}{\partial x} = \frac{\partial u^T x}{\partial x} = u^T = w^T A \quad \text{and} \quad \nabla_x (w^T A x) = \left(\frac{\partial (w^T A x)}{\partial x} \right)^T = A^T w.
\]

Using the formula (2): The idea is to use \(f(x) = w^T A x \), and apply equation (2). Using the fact that \(w^T A x = \sum_{i=1}^d \sum_{j=1}^d w_i A_{ij} x_j \), we find that

\[
\frac{\partial f}{\partial x_j} = \frac{\partial}{\partial x_j} \sum_{i=1}^d \sum_{j=1}^d w_i A_{ij} x_j = \sum_{i=1}^d A_{ij} \frac{\partial x_i}{\partial x_j} = \sum_{i=1}^d A_{ij} w_i = A^T w_j,
\]

where in the last step we have used equation (10). Consequently, we have

\[
\frac{\partial (w^T A x)}{\partial x} = \begin{bmatrix} (A^T w)_1, (A^T w)_2, \ldots, (A^T w)_d \end{bmatrix} = (A^T w)^T = w^T A,
\]

and

\[
\nabla_x (w^T A x) = \left(\frac{\partial (w^T A x)}{\partial x} \right)^T = A^T w.
\]

(c) \(\frac{\partial (w^T A x)}{\partial w} \) and \(\nabla_w (w^T A x) \)

Solution: We discuss two ways to solve the problem.
Using part (a) and (b): Note that we can solve this question simply by using part (a) and (b). We have \((w^\top Ax) = (x^\top A^\top w)\), since for a scalar \(\alpha\), we have \(\alpha = \alpha^\top\). And in part (b), reversing the roles of \(x\) and \(w\), we obtain that

\[
\frac{\partial (w^\top Ax)}{\partial w} = \frac{\partial x^\top A^\top w}{\partial w} = x^\top A^\top \quad \text{and} \quad \nabla_w (w^\top Ax) = \left(\frac{\partial (w^\top Ax)}{\partial w}\right)^\top = Ax.
\]

Using the formula \(\square\): Using a similar idea as in the previous part, we have

\[
\frac{\partial f}{\partial w_i} = \frac{\partial \sum_{i=1}^d \sum_{j=1}^d w_{ij}x_j}{\partial w_i} = \frac{\partial \sum_{i=1}^d w_i(\sum_{j=1}^d A_{ij}x_j)}{\partial w_i} = \sum_{j=1}^d A_{ij}x_j = (Ax),
\]

where in the last step we have used equation (9). Consequently, we have

\[
\frac{\partial (w^\top Ax)}{\partial w} = \left[(Ax)_1, (Ax)_2, \ldots, (Ax)_d \right] = (Ax)^\top = x^\top A^\top,
\]

and

\[
\nabla_w (w^\top Ax) = \left(\frac{\partial (w^\top Ax)}{\partial w}\right)^\top = (x^\top A^\top)^\top = Ax.
\]

(d) \(\frac{\partial (w^\top Ax)}{\partial A}\) and \(\nabla_A (w^\top Ax)\)

Solution:

Using the formula \(\square\): We use \(y = w^\top Ax\) and apply the formula \(\square\). We have \(w^\top Ax = \sum_{i=1}^d \sum_{j=1}^d w_{ij}A_{ij}x_j\) and hence

\[
\left[\frac{\partial (w^\top Ax)}{\partial A} \right]_{ij} = \frac{\partial (w^\top Ax)}{\partial A_{ji}} = w_jx_i = (xw^\top)_{ij}.
\]

Consequently, we have

\[
\frac{\partial (w^\top Ax)}{\partial A} = [(xw^\top)]_{ij} = xw^\top,
\]

and thereby \(\nabla_A (w^\top Ax) = wx^\top\).

(e) \(\frac{\partial (x^\top Ax)}{\partial x}\) and \(\nabla_x (x^\top Ax)\)

Solution:

We provide two ways to solve this problem.
Using the formula (2): We have \(\mathbf{x}^\top \mathbf{A} \mathbf{x} = \sum_{i=1}^{d} \sum_{j=1}^{d} x_i A_{ij} x_j \). For any given index \(\ell \), we have

\[
\mathbf{x}^\top \mathbf{A} \mathbf{x} = A_{\ell \ell} x_\ell^2 + x_\ell \sum_{j \neq \ell} (A_{j \ell} + A_{\ell j}) x_j + \sum_{i \neq \ell} x_i A_{i \ell} x_j.
\]

Thus we have

\[
\frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial x_\ell} = 2A_{\ell \ell} x_\ell + \sum_{j \neq \ell} (A_{j \ell} + A_{\ell j}) x_j = \sum_{j=1}^{d} (A_{j \ell} + A_{\ell j}) x_j = ((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})_\ell.
\]

And consequently

\[
\frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \left[\frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial x_1}, \frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial x_2}, \ldots, \frac{\partial \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial x_d} \right]
= \left[((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})_1, ((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})_2, \ldots, ((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})_d \right]
= ((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})^\top
= \mathbf{x}^\top (\mathbf{A} + \mathbf{A}^\top),
\]

and hence \(\nabla_x (\mathbf{x}^\top \mathbf{A} \mathbf{x}) = \left[\frac{\partial (\mathbf{x}^\top \mathbf{A} \mathbf{x})}{\partial x} \right]^\top = (\mathbf{A} + \mathbf{A}^\top) \mathbf{x} \).

Using the product rule: Let

\[
g(\mathbf{x}) = \mathbf{x},
\]

\[
h(\mathbf{x}) = \mathbf{A} \mathbf{x}.
\]

We have that

\[
\frac{dg(\mathbf{x})}{d\mathbf{x}} = \mathbf{I},
\]

\[
\frac{dh(\mathbf{x})}{d\mathbf{x}} = \mathbf{A}.
\]

The product rule says that

\[
\frac{d(x^\top \mathbf{A} \mathbf{x})}{d\mathbf{x}} = \frac{d(g(\mathbf{x})^\top h(\mathbf{x}))}{d\mathbf{x}} = g(\mathbf{x})^\top \frac{dh(\mathbf{x})}{d\mathbf{x}} + h(\mathbf{x})^\top \frac{dg(\mathbf{x})}{d\mathbf{x}}
= \mathbf{x}^\top \mathbf{A} + \mathbf{x}^\top \mathbf{A}^\top \mathbf{I}
= \mathbf{x}^\top (\mathbf{A} + \mathbf{A}^\top),
\]

and hence \(\nabla_x (\mathbf{x}^\top \mathbf{A} \mathbf{x}) = (\mathbf{A} + \mathbf{A}^\top) \mathbf{x} \)

(f) \(\nabla_x^2 (\mathbf{x}^\top \mathbf{A} \mathbf{x}) \)

Solution:
Using the formula (8): A straight forward computation yields that
\[
\frac{\partial^2 f}{\partial x_i \partial x_j} = A_{ij} + A_{ji}
\]
and hence
\[
\nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j} \right] = [(A_{ij} + A_{ji})] = A + A^\top.
\]