
CS 189 Introduction to Machine Learning
Spring 2018 DIS9

1 Quadratic Discriminant Analysis (QDA)

We have training data for a two class classification problem as laid out in Figure 1. The black
dots are examples of the positive class (y = +1) and the white dots examples of the negative class
(y = −1).

Figure 1: Draw your answers to the QDA problem.
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(a) Draw on Figure 1 the position of the class centroids µ(+) and µ(−) for the positive and negative
class respectively, and indicate them as circled (+) and (−). Give their coordinates:

µ(+) =

[ ]
µ(−) =

[ ]
(b) Compute the covariance matrices for each class:

Σ(+) =

[ ]
Σ(−) =

[ ]
(c) Assume each class has data distributed according to a bi-variate Gaussian, centered on the

class centroids computed in question (a). Draw on Figure 1 the contour of equal likelihood
p(X = x|Y = y) going through the data samples, for each class. Indicate with light lines the
principal axes of the data distribution for each class.

(d) Compute the determinant and the inverse of Σ(+) and Σ(−):

|Σ(+)| = |Σ(−)| =

Σ−1(+) =

[ ]
Σ−1(−) =

[ ]
(e) The likelihood of examples of the positive class is given by:

p(X = x|Y = +1) =
1

2π|Σ(+)|1/2
exp

(
− 1

2
(x− µ(+))

TΣ−1(+)(x− µ(+))
)

and there is a similar formula for p(X = x|Y = −1). Compute f(+)(x) = log
(
p(X = x|Y =

+1)
)

and f(−)(x) = log
(
p(X = x|Y = −1)

)
. Then compute the discriminant function

f(x) = f(+)(x)− f(−)(x):

f(+)(x) =

f(−)(x) =

f(x) =

(f) Draw on Figure 1 for each class contours increasing equal likelihood. Geometrically construct
the Bayes optimal decision boundary. Compare to the formula obtained with f(x) = 0 after
expressing x2 as a function of x1:

x2 =

What type of function is it?

(g) Now assume p(Y = −1) 6= p(Y = +1), how does it change the decision boundary?
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2 Logistic Regression
In this problem, we will explore logistic regression and derive some insights.

(a) You are given the following datasets:

Assume you are using Least Square Means for classification. Draw the decision boundary for
the dataset above. Recall that the optimization problem has the following form:

arg min
w

n∑
i=1

(w>xi − yi)2 + λ‖w‖22

(b) Draw the ideal decision boundary for the dataset above.

(c) Assume your data comes from two classes and the prior for class k is p(y = k) = πk. Also the
conditional probability distribution for each class k is Gaussian, x|y = k ∼ N (µk,Σ), that
is fk(x) = f(x|y = k) = 1√

(2π)d|Σ|
exp
{

(x− µk)
>Σ−1(x− µk)

}
. Assume that {µk}1k=0,Σ

where estimated from the training data.

Show that P (y|x) = s(w>x) is the sigmoid function, where s(ζ) = 1
1+e−ζ

.

(d) In the previous part we saw that the posterior probability for each class is the sigmoid func-
tion under the LDA model assumptions. Notice that LDA is a generative model. In this part
we are going to look at the discriminative model. We will assume that the posterior proba-
bility has Bernoulli distribution and the probability for each class is the sigmoid function, i.e.
p(y|x; w) = qy(1− q)1−y, where q = s(w>x) and try to find w that maximizes the likelihood
function. Can you find a closed form maximum-likelihood estimation of w?

(e) In this section we are going to use Newton method to find the optimal solution for w. Write
out the update step of Newton method. What other method does this resemble?
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