1 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of a statistical model given observations, by finding the parameters that maximize the likelihood of the observations. Concretely, given observations \(y_1, y_2, \ldots, y_n \) distributed according to \(p_\theta(y_1, y_2, \ldots, y_n) \) (here \(p_\theta \) can be a probability mass function for discrete observations or a density for continuous observations), the likelihood function is defined as \(L(\theta) = p_\theta(y_1, y_2, \ldots, y_n) \) and the MLE is

\[
\hat{\theta}_{\text{MLE}} = \arg \max_{\theta} L(\theta).
\]

We often make the assumption that the observations are \textit{independent and identically distributed} or iid, in which case \(p_\theta(y_1, y_2, \ldots, y_n) = p_\theta(y_1) \cdot p_\theta(y_2) \cdots \cdot p_\theta(y_n) \).

(a) Your friendly TA recommends maximizing the log-likelihood \(\ell(\theta) = \log L(\theta) \) instead of \(L(\theta) \). Why does this yield the same solution \(\hat{\theta}_{\text{MLE}} \)? Why is it easier to solve the optimization problem for \(\ell(\theta) \) in the iid case? Write down both \(L(\theta) \) and \(\ell(\theta) \) for the Gaussian \(f_\theta(y) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}} \) with \(\theta = (\mu, \sigma) \).
(b) What is \(\int p_\theta(y_1, y_2, \ldots, y_n) \, dy_1 \cdots dy_n \)? Can we say anything about \(\int p_\theta(y_1, y_2, \ldots, y_n) \, d\theta \)?

(c) The Poisson distribution is \(f_\lambda(y) = \frac{\lambda^y e^{-\lambda}}{y!} \). Let \(Y_1, Y_2, \ldots, Y_n \) be a set of independent and identically distributed random variables with Poisson distribution with parameter \(\lambda \). Find the joint distribution of \(Y_1, Y_2, \ldots, Y_n \). Find the maximum likelihood estimator of \(\lambda \) as a function of observations \(y_1, y_2, \ldots, y_n \).
Consider sample points $X_1, X_2, \ldots, X_n \in \mathbb{R}^d$ and associated values $y_1, y_2, \ldots, y_n \in \mathbb{R}$, an $n \times d$ design matrix $X = [X_1 \ldots X_n]^\top$ and an n-vector $y = [y_1 \ldots y_n]^\top$.

For the sake of simplicity, assume (1) that the sample data have been centered (i.e., each feature has mean 0) and (2) that the sample data have been whitened, meaning a linear transformation of is applied to the original data matrix so that the resulting features have variance 1 and the features are uncorrelated; i.e., $X^\top X = nI$.

For this question, we will not use a fictitious dimension nor a bias term; our linear regression function will output zero for $x = 0$.

Consider linear least-squares regression with regularization in the ℓ_1-norm, also known as Lasso. The Lasso cost function is

$$J(w) = |Xw - y|^2 + \lambda \|w\|_1$$

where $w \in \mathbb{R}^d$ and $\lambda > 0$ is the regularization parameter. Let $w^* = \arg \min_{w \in \mathbb{R}^d} J(w)$ denote the weights that minimize the cost function.

In the following steps, we will explore the sparsity-promoting property of the ℓ_1-norm and compare this with the ℓ_2-norm.

1. We use the notation X_i to denote column i of the design matrix X, which represents the i^{th} feature. Write $J(w)$ in the following form for appropriate functions g and f.

$$J(w) = g(y) + \sum_{i=1}^d f(X_{i}, w_i, y, \lambda)$$
2. If \(w_i^* > 0 \), what is the value of \(w_i^* \)?

3. If \(w_i^* < 0 \), what is the value of \(w_i^* \)?

4. Considering parts 2 and 3, what is the condition for \(w_i^* \) to be zero?

5. Now consider ridge regression, which uses the \(\ell_2 \) regularization term \(\lambda |w|^2 \). How does this change the function \(f(\cdot) \) from part 1? What is the new condition in which \(w_i^* = 0 \)? How does
it differ from the condition you obtained in part 4?
3 Probabilistic Interpretation of Lasso

Let’s start with the probabilistic interpretation of least squares. Start with labels $y \in \mathbb{R}$, data $x \in \mathbb{R}^d$, and noise $z \sim N(0, \sigma^2)$, where $y = w^T x + z$. Recall from a previous homework that we then have

$$P(y|x, \sigma^2) \sim N(w^T x, \sigma^2)$$

However, maximum likelihood estimates (MLE) can overfit by picking parameters that mirror the training data. To ameliorate this issue, we can assume a Laplace prior on $w_j \sim \text{Laplace}(0, t)$, i.e.

$$P(w_j) = \frac{1}{2t} e^{-|w_j|/t}$$

$$P(w) = \prod_{j=1}^{D} P(w_j) = \left(\frac{1}{2t}\right)^D \cdot e^{-\sum |w_j| / t}$$

Here, we will see that this modification results in a new objective function, called Lasso.

Recall that the MLE objective finds the parameters that maximize the likelihood of the data,

$$w^* = \arg \max_w L(w)$$

$$= \arg \max_w P(Y_1, \ldots, Y_n, w, X_1, \ldots, X_n, \sigma^2)$$

$$= \arg \max_w \prod_{i=1}^{n} P(Y_i|X_i, w, \sigma^2).$$

When working in a Bayesian framework, we instead focus on the posterior distribution of the parameters conditioned on the data, $P(w|Y_1, \ldots, Y_n, X_1, \ldots, X_n, \sigma^2)$. To pick a single model, we can choose the w that is most likely according to the posterior,

$$w^* = \arg \max_w P(w|Y_1, \ldots, Y_n, X_1, \ldots, X_n, \sigma^2)$$

$$= \arg \max_w \frac{P(w, Y_1, \ldots, Y_n|X_1, \ldots, X_n, \sigma^2)}{P(Y_1, \ldots, Y_n|X_1, \ldots, X_n, \sigma^2)}$$

$$= \arg \max_w \frac{P(Y_1, \ldots, Y_n|w, X_1, \ldots, X_n, \sigma^2)P(w)}{P(Y_1, \ldots, Y_n|X_1, \ldots, X_n, \sigma^2)}$$

$$= \arg \max_w \frac{L(w)P(w)}{P(Y_1, \ldots, Y_n)}$$

$$= \arg \max_w L(w)P(w) \quad \text{since } P(Y_1, \ldots, Y_n|X_1, \ldots, X_n, \sigma^2) \text{ does not depend on } w.$$
(a) Write the log-likelihood for this MAP estimate.

(b) We already have the log-likelihood for MAP. Show that MAP—in this case, Gaussian noise with a Laplace prior—is equivalent to minimizing the following. Additionally, identify the constant \(\lambda \). Note that \(||w||_1 = \sum_{j=1}^{D} |w_j| \).

\[
J(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_1
\]