1 Probabilistic Graphical Models

Recall that we can represent joint probability distributions with directed acyclic graphs (DAGs). Let \(G \) be a DAG with vertices \(X_1, \ldots, X_k \). If \(P \) is a (joint) distribution for \(X_1, \ldots, X_k \) with (joint) probability mass function \(p \), we say that \(G \) represents \(P \) if

\[
p(x_1, \cdots, x_k) = \prod_{i=1}^{k} P(X_i = x_i | \text{pa}(X_i)),
\]

where \(\text{pa}(X_i) \) denotes the parent nodes of \(X_i \). (Recall that in a DAG, node \(Z \) is a parent of node \(X \) iff there is a directed edge going out of \(Z \) into \(X \)).

Consider the following DAG

![Figure 1: G, a DAG](image)

(a) Write down the joint factorization of \(P_{S,X,Y,Z}(s, x, y, z) \) implied by the DAG \(G \) shown in Figure 1.

(b) Is \(S \perp Z \mid Y \)?

(c) Is \(S \perp X \mid Y \)?
2 Hidden Markov Models: Math Review

A Hidden Markov Model is a Markov Process with unobserved (hidden) states.

Consider the following system in \mathbb{R}^2, where X_n is the true state at any given time n and Y_n is our observation. Given an initial state X_0, we move to future states by recursively multiplying our current state with transformation matrix A and adding i.i.d. Standard Normal Gaussian noise. When we take an observation Y_n of the true state X_n, we are also exposed to i.i.d. Standard Normal Gaussian Noise.

$$X_{n+1} = AX_n + N(0, I)$$ \hspace{1cm} (2) \\
$$Y_n = X_n + N(0, I)$$ \hspace{1cm} (3)

Where we have the 2x2 transformation matrix A defined as follows:

$$A = \begin{bmatrix} .5 & -.25 \\ -.25 & .75 \end{bmatrix}$$ \hspace{1cm} (4)

If we restrict the initial state X_0 to be a unit vector ($\|X_0\|_2 = 1$), determine the following

(a) What are the eigenvalues of A? Is A a positive semi-definite matrix? (Note that $\sqrt{5} = 2.236$)
(b) What is the $\| E[Y_{\infty}] \|_2$? Prove your assertion.

(c) Consider the Frobenius Norm of an arbitrary $M \times N$ matrix Q, defined as $\| Q \|_F = \sqrt{\sum_i \sum_j |Q_{i,j}|^2}$, which indicates the “magnitude” or “largeness” of a matrix. Is $\| Var[Y_{\infty}] \|_F$ finite or infinite? Prove your assertion.

You may find the following facts to be useful:

(i) Triangle Inequality: $\| X + Y \| \leq \| X \| + \| Y \|$

(ii) Cauchy Schwarz: $\| X Y \| \leq \| X \| \| Y \|$

(iii) Geometric Sum: $\sum_{i=0}^{\infty} ar^i = \frac{a}{1-r}$ \quad $\forall r$ s.t. $0 < r < 1$; $a, r \in \mathbb{R}$