MLE vs. MAP

Let D denote the observed data and θ the parameter. While MLE only maximizes a likelihood distribution $p(D|\theta)$, MAP takes a more Bayesian approach. MAP assumes that the parameter θ is also a random variable and has its own distribution. Recall that using Bayes’ rule, the posterior distribution can be seen as the product of likelihood and prior:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} \propto p(D|\theta)p(\theta)$$

Suppose that the data consists of n i.i.d. observations $D = \{x_1, \ldots, x_n\}$. MAP tries to infer the parameter by maximizing the posterior distribution:

$$\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta|D)$$

$$= \arg \max_{\theta} p(D|\theta)p(\theta)$$

$$= \arg \max_{\theta} \left[\prod_{i=1}^{n} p(x_i|\theta) \right] p(\theta)$$

$$= \arg \max_{\theta} \left[\sum_{i=1}^{n} \log p(x_i|\theta) \right] + \log p(\theta)$$

Note that since both of these methods are point estimates (they yield a value rather than a distribution), neither of them are completely Bayesian. A faithful Bayesian would use a model that yields a posterior distribution over all possible values of θ, but this is often intractable or very computationally expensive.

Now suppose we have a coin with unknown bias θ. We are trying to find the bias of the coin by maximizing the underlying distribution. You tossed the coin $n = 10$ times and 3 of the tosses came as heads.

(a) **What is the MLE of the bias of the coin $\hat{\theta}_{MLE}$?**

Solution:

$$p(x|\theta) \propto \theta^x (1 - \theta)^{(n-x)} = \theta^3 (1 - \theta)^7.$$

Taking the logarithm for easier computation, we have

$$\log p(x|\theta) = 3 \log \theta + 7 \log(1 - \theta) + C.$$
This is a concave function and thus the maximum is achieved by setting the derivative w.r.t. θ to 0:

$$\frac{d}{d\theta} \log p(x|\theta) = \frac{3}{\theta} - \frac{7}{1-\theta} = 0.$$

Therefore,

$$\hat{\theta}_{\text{MLE}} = 0.3.$$

(b) Suppose we know that the bias of the coin is distributed according to $\theta \sim N(0.8, 0.09)$, i.e., we are rather sure that the bias should be around 0.8. What is the MAP estimate of the coin bias $\hat{\theta}_{\text{MAP}}$? You can leave your result as a polynomial equation on θ.

Solution: Now take into account the prior distribution:

$$p(\theta|x) \propto p(x|\theta)p(\theta)$$

$$\propto \theta^x (1 - \theta)^{n-x} \exp \left[- \frac{(\theta - \mu)^2}{2\sigma^2} \right]$$

$$= \theta^3 (1 - \theta)^7 \exp \left[- \frac{(\theta - 0.8)^2}{2 \times 0.09} \right].$$

Taking the logarithm,

$$\log p(\theta|x) = 3 \log \theta + 7 \ln(1 - \theta) - \frac{(\theta - 0.8)^2}{2 \times 0.09} + C.$$

Taking the derivative w.r.t. θ,

$$\frac{d}{d\theta} \log p(\theta|x) = \frac{3}{\theta} - \frac{7}{1-\theta} - \frac{\theta - 0.8}{0.09} = 0.$$

Solving the equation yields

$$\hat{\theta}_{\text{MAP}} \approx 0.406.$$

$\hat{\theta}$ is now larger because we are assuming a larger prior.

(c) What if our prior is $\theta \sim N(0.5, 0.09)$ or $N(0.8, 1)$ instead?

How does the difference between the new MAP estimates and MLE estimate change and why?

Solution: The above equation would instead be

$$\frac{3}{\theta} - \frac{7}{1-\theta} - \frac{\theta - 0.5}{0.09} = 0$$

for $N(0.5, 0.09)$ and

$$\frac{3}{\theta} - \frac{7}{1-\theta} - (\theta - 0.8) = 0$$

This is a somewhat strange choice of prior, since we know that $0 \leq \theta \leq 1$. However, we will stick with this example for illustrative purposes.
for \(N(0.8, 1) \). \(\hat{\theta}_{\text{MAP}} \approx 0.340 \) for \(N(0.5, 0.3) \) and \(\hat{\theta}_{\text{MAP}} \approx 0.31 \) for \(N(0.8, 1) \). For \(N(0.5, 0.3) \), the prior is less distant from the experiment result; for \(N(0.8, 1) \), the prior is weaker due to a larger variance. Therefore, the difference between the two models will decrease.

(d) **What if our prior is that \(\theta \) is uniformly distributed in the range \((0, 1) \)?**

Solution: The MLE and MAP estimate will be the same since the prior term \(p(\theta) \) is uniform and can be canceled out. From a Bayesian perspective, MLE can, in certain cases, be seen as a special case of MAP estimation with a uniform prior.
2 Probabilistic Interpretation of Lasso

Let’s start with the probabilistic interpretation of least squares. We’re given labels $y \in \mathbb{R}$, data $x \in \mathbb{R}^d$, and Gaussian noise $z \sim \mathcal{N}(0, \sigma^2)$, where $y = w^T x + z$. Recall from lecture and the previous discussion that this results in a probabilistic linear model given by:

$$p(y|x; w) \sim \mathcal{N}(w^T x, \sigma^2)$$

However, maximum likelihood estimates (MLE) can overfit to the training data (analogous to how fitting a very high dimensional polynomial to data leads to large coefficients and extreme behavior at unseen points). To ameliorate this issue, we can assume a zero-mean Laplace prior on each component of the parameter $w_j \sim \text{Laplace}(0, t)$:

$$p(w_j) = \frac{1}{2t} \exp\left\{-\frac{1}{t} |w_j| \right\}$$

$$p(w) = \prod_{j=1}^d p(w_j) = \left(\frac{1}{2t}\right)^d \cdot \exp\left\{-\frac{1}{t} \sum_{j=1}^d |w_j| \right\}$$

Assume that t is a known constant. Here, we will see that this modification results in a new objective called Lasso regression.

(a) Recall that the MLE objective finds the parameters that maximize the likelihood of the data,

$$\hat{w} = \arg\max \ L(w)$$

$$= \arg\max \ p(Y_1, \ldots, Y_n, X_1, \ldots, X_n, \sigma^2)$$

$$= \arg\max \ \prod_{i=1}^n p(Y_i|X_i, w, \sigma^2).$$

When working in a Bayesian framework, we instead focus on the posterior probability of the parameters (the unknown quantity) conditioned the data (the evidence):

Posterior = $p(\text{unknowns} | \text{evidence}) = p(w|Y_1, \ldots, Y_n, X_1, \ldots, X_n, \sigma^2)$

Derive the MAP objective as a function of the log-likelihood $\ell(w)$ and the prior $p(w)$.

Solution:

$$\hat{w}_{\text{MAP}} = \arg\max \ \frac{P(w, Y_1, \ldots, Y_n|X_1, \ldots, X_n, \sigma^2)}{P(Y_1, \ldots, Y_n|X_1, \ldots, X_n, \sigma^2)}$$

$$= \arg\max \ \frac{P(Y_1, \ldots, Y_n, w, X_1, \ldots, X_n, \sigma^2)P(w)}{P(Y_1, \ldots, Y_n|X_1, \ldots, X_n, \sigma^2)}$$

$$= \arg\max \ \frac{L(w)P(w)}{P(Y_1, \ldots, Y_n)}$$
\[
= \arg \max_w L(w)P(w) \quad \text{since } P(Y_1, \ldots, Y_n|X_1, \ldots, X_n, \sigma^2) \text{ does not depend on } w.
\]
\[
= \arg \max_w \ell(w) + \log P(w)
\]

We call \(w^* \) the Maximum a posteriori (MAP) estimate.

(b) Fill in the terms of the MAP objective you derived, assuming Gaussian noise and a Laplace prior on the parameter.

Solution:

\[
P(w|X_i, Y_i) \propto \left(\prod_{i=1}^n N(Y_i|w^T X_i, \sigma^2) \right) \cdot P(w) = \left(\prod_{i=1}^n N(Y_i|w^T X_i, \sigma^2) \right) \cdot \prod_{j=1}^D P(w_j)
\]

Taking the log of the above expression, we now have:

\[
l(w) = \sum_{i=1}^n \log N(Y_i|w^T X_i, \sigma^2) + \sum_{j=1}^D \log P(w_j)
\]
\[
= \sum_{i=1}^n \log \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(Y_i - w^T X_i)^2}{2\sigma^2}\right) \right) + \sum_{j=1}^D \log \left(\frac{1}{2t} \exp\left(\frac{-|w_j|}{t}\right) \right)
\]
\[
= -\sum_{i=1}^n \frac{(Y_i - w^T X_i)^2}{2\sigma^2} - \frac{\sum_{j=1}^D |w_j|}{t} + n\log \left(\frac{1}{\sqrt{2\pi}\sigma} \right) + D\log\left(\frac{1}{2t} \right)
\]

After dropping constants that don’t depend on \(w \) and converting sums to their respective norms, we get:

\[
\hat{w}_{\text{MAP}} = \arg \max_w -\frac{1}{2\sigma^2}||y - Xw||_2^2 - \frac{1}{t}||w||_1
\]

(c) Using your answer from the previous part, show that maximizing the MAP objective is equivalent to minimizing the following:

\[
J(w) = \sum_{i=1}^n (Y_i - w^T X_i)^2 + \lambda||w||_1
\]

What is the constant \(\lambda \) in terms of given quantities?

Solution:

\[
\hat{w}_{\text{MAP}} = \arg \max_w -\frac{1}{2\sigma^2}||y - Xw||_2^2 - \frac{1}{t}||w||_1
\]
\[
= \arg \min_w \frac{1}{2\sigma^2}||y - Xw||_2^2 + \frac{1}{t}||w||_1 \quad \text{since } \arg \max_x f(x) = \arg \min_x -f(x)
\]
\[
= \arg \min_w ||y - Xw||_2^2 + \frac{2\sigma^2}{t} ||w||_1 \quad \text{since } 2\sigma^2 > 0
\]
3 Independence and Multivariate Gaussians

To review, a covariance matrix \(\Sigma \in \mathbb{R}^{N \times N} \) for a random variable \(X \in \mathbb{R}^N \) with the following values, where \(\text{cov}(X_i, X_j) = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)] \) is the covariance between the \(i \)-th and \(j \)-th elements of the random vector \(X \):

\[
\Sigma = \begin{bmatrix}
\text{cov}(X_1, X_1) & \cdots & \text{cov}(X_1, X_n) \\
\vdots & \ddots & \vdots \\
\text{cov}(X_n, X_1) & \cdots & \text{cov}(X_n, X_n)
\end{bmatrix} = \mathbb{E}[(X - \mu)(X - \mu)^\top] .
\]

(1)

Recall that the density of an \(N \)-dimensional Multivariate Gaussian Distribution \(\mathcal{N}(\mu, \Sigma) \) is defined as follows when \(\Sigma \) is positive definite:

\[
f(x) = \frac{1}{\sqrt{(2\pi)^N|\Sigma|}} \exp\left\{ -\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu) \right\}.
\]

(2)

Here, \(|\Sigma|\) denotes the determinant of the matrix \(\Sigma \).

(a) For \(X = [X_1, \ldots, X_n]^\top \sim \mathcal{N}(\mu, \Sigma) \), verify that if \(X_i, X_j \) are independent (for all \(i \neq j \)), then \(\Sigma \) must be diagonal, that is, \(X_i, X_j \) are uncorrelated. **Solution:** Recall that if random variables \(Z, W \) are independent, we have \(\mathbb{E}[ZY] = \mathbb{E}[Z]\mathbb{E}[Y] \). Thus we have the covariance \(\mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)] = \mathbb{E}[X_i - \mu_i]\mathbb{E}[X_j - \mu_j] = 0 \cdot 0 = 0 \), i.e. the \(X_i, X_j \) are uncorrelated.

(b) Let \(N = 2, \mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \), and \(\Sigma = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \). Suppose \(X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathcal{N}(\mu, \Sigma) \). Show that \(X_1, X_2 \) are independent if \(\beta = 0 \). Recall that two continuous random variables \(W, Y \) with joint density \(f_{W,Y} \) and marginal densities \(f_W, f_Y \) are independent if \(f_{W,Y}(w, y) = f_W(w)f_Y(y) \). **Solution:** Recall that the marginal density of two jointly Gaussian random variables is also Gaussian. In particular, we have that \(X_1 \sim \mathcal{N}(\mu_1, \alpha) \) and \(X_2 \sim \mathcal{N}(\mu_2, \gamma) \). Let’s denote the marginal densities as \(f_{X_1}(\cdot) \) and \(f_{X_2}(\cdot) \).

Since \(\beta = 0 \), we may compute \(\Sigma^{-1} = \begin{pmatrix} \alpha^{-1} & 0 \\ 0 & \gamma^{-1} \end{pmatrix} \).

Let’s write out the joint density of \(X_1, X_2 \):

\[
f_{X_1X_2}(x_1, x_2) = \frac{1}{\sqrt{(2\pi)^N|\Sigma|}} e^{-\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu)}
\]

\[
= \frac{1}{\sqrt{(2\pi)^2 \alpha \gamma}} e^{-\frac{1}{2} \alpha^{-1}(x_1 - \mu_1)^2 + \gamma^{-1}(x_2 - \mu_2)^2}
\]

\[
= \frac{1}{\sqrt{(2\pi)^2 \alpha \gamma}} e^{-\frac{1}{2} \alpha^{-1}(x_1 - \mu_1)^2} \cdot \frac{1}{\sqrt{(2\pi)^2 \gamma}} e^{-\frac{1}{2} \gamma^{-1}(x_2 - \mu_2)^2}
\]

\[
= f_{X_1}(x_1) \cdot f_{X_2}(x_2)
\]

This proves that \(X_1, X_2 \) are independent if \(\beta = 0 \). Note that we don’t need to verify that \(f_{X_1}(x_1) \) and \(f_{X_2}(x_2) \) are properly normalized (i.e. integrate to 1), since we can always shift around constant factors to ensure that this is the case.
(c) Consider a data point \(x \) drawn from a \(N \)-dimensional zero mean Multivariate Gaussian distribution \(N(0, \Sigma) \), as shown above. Assume that \(\Sigma^{-1} \) exists. Prove that there exists matrix \(A \in \mathbb{R}^{N,N} \) such that \(x^T \Sigma^{-1} x = \|Ax\|_2^2 \) for all vectors \(x \). What is the matrix \(A \)?

Solution: Use the Spectral Decomposition Theorem to convert \(\Sigma \) into the following: \(U \) is a unitary matrix of orthonormal eigenvectors \(e_i, \forall i \in [0..N] \) and \(D \) is a diagonal matrix with eigenvalues \(\lambda_i, \forall i \in [0..N] \) located at indices corresponding to eigenvectors in \(U \). Note that all the eigenvalues are greater 0 since \(\Sigma \) is positive semidefinite (it is a covariance matrix). Indeed, for any \(v \in \mathbb{R}^n \), \(v^T \Sigma v = \mathbb{E}[v^T(XX^T)v] = \mathbb{E}[\|Xv\|_2^2] \geq 0 \) (but this was not necessary to show to receive full credit). In fact, since \(\Sigma \) is invertible, all eigenvalues of \(\Sigma \) are strictly positive, Hence, we may write

\[
\Sigma = UDU^T,
\]

and therefore

\[
\Sigma^{-1} = (UDU^T)^{-1} = (U^T)^{-1}D^{-1}U^{-1} = UD^{-1}U^T.
\]

This is because a unitary matrix \(U \) is such that \(U^{-1} = U^T \). Note that if the diagonal matrix \(D \) has values \(d_{i,i} \), \forall i, then \(D^{-1} \) has value \(\frac{1}{d_{i,i}} \), \forall i. Once again, since \(\Sigma \) was positive definite, the value \(\frac{1}{d_{i,i}} \) exists.

Now, we decompose \(D^{-1} \) into its square-root by defining \(Q \) as a diagonal matrix with diagonal values \(\frac{1}{\sqrt{d_{i,i}}} \). Verify that \(QQ = D^{-1} \) and that \(Q^T = Q \). Thus, we have:

\[
\Sigma^{-1} = UD^{-1}U^T = UQQU^T = UQQ^T U^T
\]

\[
\Sigma^{-1} = A^T A,
\]

where we’ve defined \(A = (UQ)^T \). Therefore,

\[
x^T \Sigma^{-1} x = x^T A^T Ax = (Ax)^T (Ax) = \|Ax\|_2^2.
\]

Note that \(A \) is not necessarily unique, since if \(A^T A = \Sigma^{-1} \), then also \((QA)^T QA = \Sigma^{-1} \) for any orthogonal \(Q \).

(d) Let’s constrain \(x \) to be on the unit sphere. In other words, the \(\ell_2 \) norm (or magnitude) of vector \(x \) is 1 (\(\|x\|_2 = 1 \)). In this case, what are the maximum and minimum values of \(\|Ax\|_2^2 \)? In other words, \(\max_{x: \|x\|_2 = 1} \|Ax\|_2^2 \) and \(\min_{x: \|x\|_2 = 1} \|Ax\|_2^2 \)?

Solution: \(x^T \Sigma^{-1} x \) is a scalar written in vector quadratic form. It looks like an incomprehensible value, but when we convert it to \(\|Ax\|_2^2 \), we see that in reality its just the squared \(L2 \) norm of \(Ax \), which measures the squared distance from the data vector \(x \) from the mean (in this case 0). Note that we can change the mean to be any arbitrary value without loss of generality.

Recall from Part B our decomposition for \(\Sigma^{-1} \), which was as follows where \(U \) is a unitary matrix, \(D \) is a diagonal matrix.

\[
\Sigma^{-1} = UD^{-1}U^T = A^T A
\]
Note that $\|x\|_2 = 1$ and $\|Ux\|_2 = 1$ since unitary matrices are orthonormal and preserve magnitude. Define $q = Ux$, we have

$$\|Ax\|_2^2 = x^T A^T A x = x^T U D^{-1} U^T x = q^T D^{-1} q$$ \hspace{1cm} (7)

We can choose our x such that q will be any Euclidean Basis Vector e_i such that the ith element is 1 and all other elements are 0. Therefore, the maximum value that $\|Ax\|_2^2$ is $\frac{1}{\lambda_i}$, where λ_i is the minimum eigenvalue of Σ. The minimum value that $\|Ax\|_2^2$ is $\frac{1}{\lambda_j}$, where λ_j is the maximum eigenvalue of Σ.

(e) If we had $X_i \perp X_j \forall i, j$ (\perp denotes independence), what is the intuitive meaning for the maximum and minimum values of $\|Ax\|_2^2$? Suppose you wanted to choose an x on the unit sphere to maximize the density function $f(x)$ in Eq (2), what x should you choose?

Solution:

As we showed in a previous part, if we have $X_i \perp X_j \forall i, j$, then $cov(X_i, X_j) = 0 \forall i, j$, meaning that off diagonal terms for Σ are 0. Thus, we can find Σ^{-1} directly, as follows.

$$\Sigma^{-1}_{i,j} = \begin{cases} \frac{1}{\sigma_i^2} & \text{if } i = j \\ 0 & \text{else} \end{cases}$$

Therefore, if we have $X_i \perp X_j \forall i, j$, the maximum value that $\|Ax\|_2^2$ is $\frac{1}{\sigma_i^2}$, where σ_i^2 is the minimum variance. The minimum value of $\|Ax\|_2^2$ is $\frac{1}{\sigma_j^2}$, where σ_j^2 is the maximum variance.

To maximize $f(x)$, we want the superscript above the exponent to be minimal since there is a negative sign. Thus, for $\|Ax\|_2^2$ to be minimal, we want to choose x to be the unit eigenvector corresponding to the maximal eigenvalue λ_j (i.e. maximum variance σ_j^2).