1 Backpropagation Practice

(a) Chain rule of multiple variables: Assume that you have a function given by \(f(x_1, x_2, \ldots, x_n) \), and that \(g_i(w) = x_i \) for a scalar variable \(w \). What is its computation graph? Sketch out a diagram of what the computation graph would look like. How would you compute \(\frac{d}{dw}f(g_1(w), g_2(w), \ldots, g_n(w)) \)?

(b) Let \(w_1, w_2, \ldots, w_n \in \mathbb{R}^d \), and we refer to these weights together as \(W \in \mathbb{R}^{n \times d} \). We also have \(x \in \mathbb{R}^d \) and \(y \in \mathbb{R} \). Consider the function

\[
f(W, x, y) = \left(y - \sum_{i=1}^n \phi(w_i^T x + b_i) \right)^2.
\]

Write out the function computation graph (also sometimes referred to as a pictorial representation of the network). This is a directed graph of decomposed function computations, with the output of the function at one end, and the input to the function, \(x \) at the other end, where \(b \) are the bias terms corresponding to each weight vector, i.e. \(b = [b_1, \cdots, b_n] \).

(c) Suppose \(\phi(x) \) (from the previous part) is the sigmoid function, \(\sigma(x) \). Compute the partial derivatives \(\frac{\partial f}{\partial w_i} \) and \(\frac{\partial f}{\partial b_i} \). Use the computational graph you drew in the previous part to guide you.

(d) Write down a single gradient descent update for \(w_i^{(t+1)} \) and \(b_i^{(t+1)} \), assuming step size \(\eta \). Your answer should be in terms of \(w_i^{(t)}, b_i^{(t)}, x, \) and \(y \).

(e) Define the cost function

\[
\ell(x) = \frac{1}{2} \| W^{(2)} \Phi \left(W^{(1)} x + b \right) - y \|_2^2,
\]

where \(W^{(1)} \in \mathbb{R}^{d \times d}, W^{(2)} \in \mathbb{R}^{d \times d} \), and \(\Phi : \mathbb{R}^d \to \mathbb{R}^d \) is some nonlinear transformation. Compute the partial derivatives \(\frac{\partial \ell}{\partial x}, \frac{\partial \ell}{\partial W^{(1)}}, \frac{\partial \ell}{\partial W^{(2)}}, \) and \(\frac{\partial \ell}{\partial b} \).

(f) Suppose \(\Phi \) is the identity map. Write down a single gradient descent update for \(W_i^{(1)} \) and \(W_i^{(2)} \), assuming step size \(\eta \). Your answer should be in terms of \(W_i^{(1)}, W_i^{(2)}, b_i \) and \(x, y \).