1 Maximum Likelihood Review

Suppose you are collecting data on the relative rates of different types of twins, and you obtain the following observations:

- there are \(m_i \) pairs of identical male twins and \(f_i \) pairs of identical female twins
- there are \(m_f \) pairs of fraternal (not identical) male twins and \(f_f \) pairs of fraternal female twins
- there are \(b \) pairs of fraternal opposite gender twins

To model this data, we choose these distributions and parameters:

- Given that a pair of siblings are twins, they are identical with probability \(\theta \), and fraternal (non-identical) with probability \(1 - \theta \)
- Given they are identical twins, the twins are both male with probability \(p \) and both female with probability \(1 - p \).
- Given they are twins and not identical (and thus are fraternal twins), the probability of both male twins is \(q^2 \), probability of both female twins is \((1 - q)^2 \) and probability of opposite gender twins is \(2q(1 - q) \).

(a) Write expressions for the likelihood and the log-likelihood of the data as functions of the parameters \(\theta \), \(p \), and \(q \) for the observations \(m_i \), \(f_i \), \(m_f \), \(f_f \), \(b \).

Likelihood \(L(\theta, p, q) = \)
Log likelihood \(l(\theta, p, q) = \)
(b) What are the maximum likelihood estimates for θ, p and q? Scratch space is provided to you here, which you may find useful.
2 MAP Estimation Review

Suppose we have a data set of \(n \) data points \(D = \{x_1, \ldots, x_n\} \), with each point drawn independently from a Gaussian with mean \(\mu \) and variance \(\sigma^2 \).

\[
p(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)
\]

We will place the following prior on \(\mu \):

\[
\mu \sim N(\mu_0, \sigma_0^2)
\]

The MAP estimate of \(\mu \) is defined as

\[
\mu_{\text{MAP}} = \arg \max_{\mu} p(\mu|D)
\]

(a) Write an expression for the MAP estimate of \(\mu \).

(b) What happens to the MAP estimate as \(\sigma_0^2 \to \infty \), and how is this estimate related to the ML estimate? Interpret this result.

(c) What happens to the MAP estimate as \(\sigma^2 \to \infty \)?
3 Prediction Error of Ridge Regression

(a) Let A be a $d \times n$ matrix and B be a $n \times d$ matrix. For any $\mu > 0$, show that $(AB + \mu I)^{-1}A = A(BA + \mu I)^{-1}$, if $AB + \mu I$ and $BA + \mu I$ are invertible.

(b) Let $X \in \mathbb{R}^{n \times d}$ be n samples of d features, and $y \in \mathbb{R}^n$ be the corresponding n samples of the quantity that you would like to predict with regression. Let

$$\hat{\theta}_\lambda = \arg \min_\theta \|X\theta - y\|_2^2 + \lambda \|\theta\|_2^2,$$

for $\lambda > 0$, be the solution to the ridge regression problem.

Using part (a), show that $\hat{\theta}_\lambda = X^\top (XX^\top + \lambda I)^{-1}y$.

(c) Suppose X has the singular value decomposition $U\Sigma V^\top$, where $\Sigma = \text{diag}(s_1, \cdots, s_d)$, $s_i \geq 0$. Show that $\hat{\theta}_\lambda = VD U^\top y$, where D is a diagonal matrix to be determined.
(d) Let \(\hat{y}_l = X\hat{\theta}_l \) be the predictions made by the ridge regressor \(\hat{\theta}_l \). Suppose we have \(y = X\theta_o + z \), where \(\theta_o \in \mathbb{R}^d \) and \(z \sim \mathcal{N}(0, \sigma^2 I) \in \mathbb{R}^n \) (\(\sigma > 0 \)). Further suppose that \(X \) is an orthogonal matrix, that is, \(X^TX = I \).

\[\mathbb{E}\|X(\hat{\theta}_l - \theta_o)\|^2 \]

is the expected squared difference between the predictions made by the ridge regressor \(\hat{y}_l \) and \(X\theta_o \), where the expectation is taken with respect to \(z \) (\(\| \cdot \| \) denotes \(\ell_2 \) norm).

Show that \(\mathbb{E}\|X(\hat{\theta}_l - \theta_o)\|^2 = \frac{1}{(1+\lambda)^2} (\lambda^2\|\theta_o\|^2 + d\sigma^2) \).

(e) What is the \(\lambda^* \) that you should pick to minimize the prediction error you computed in part (e)? Comment on how \(d, \sigma^2 \), and \(\theta_o \) affect the optimal choice of the regularization parameter \(\lambda \).