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1 Multivariate Gaussians
So far in our discussion of MLE and MAP in regression, we considered a set of Gaussian random
variables Z1, Z2, . . . , Zk, which can represent anything from the noise in data to the parameters of a
model. One critical assumption we made is that these variables are independent and identically dis-
tributed. However, what about the case when these variables are dependent and/or non-identical?
For example, in time series data we have the relationship

Zi+1 = rZi + Ui

where Ui
iid∼ N (0, 1) and −1 ≤ r ≤ 1 (so that it doesn’t blow up)

Here’s another example: consider the “sliding window” (like echo of audio)

Zi = ΣrjUi−j

where Ui
iid∼ N (0, 1)

In general, if we can represent the random vector Z = (Z1, Z2, . . . , Zk) as

Z = RU

where Z ∈ Rn, R ∈ Rn×n, U ∈ Rn, and Ui
iid∼ N (0, 1), we refer to Z as a Jointly Gaussian

Random Vector. Our goal now is to derive its probability density formula.

1.1 Definition
There are three equivalent definitions of a jointly Gaussian (JG) random vector:

1. A random vector Z = (Z1, Z2, . . . , Zk) is JG if there exists a base random vector U =
(U1, U2, . . . , Ul) whose components are independent standard normal random variables, a
transition matrix R ∈ Rk×l, and a mean vector µ ∈ Rk, such that Z = RU + µ.

2. A random vector Z = (Z1, Z2, . . . , Zk)
> is JG if

∑k
i=1 aiZi is normally distributed for every

a = (a1, a2, . . . , ak)
> ∈ Rk.

3. (Non-degenerate case only) A random vector Z = (Z1, Z2, . . . , Zk)
> is JG if

fZ(z) =
1√

| det(Σ)|
1

(
√

2π)k
e−

1
2
(Z−µ)>Σ−1(Z−µ)

Where Σ = E[(Z− µ)(Z− µ)>] = E[(RU)(RU)>] = RE[UU>]R>= RIR>= RR>

Σ is also called the covariance matrix of Z.
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Note that all of these conditions are equivalent. In this note we will start by showing a proof that
(1) =⇒ (3). We will leave it as an exercise to prove the rest of the implications needed to show
that the three conditions are in fact equivalent.

1.1.1 Proving (1) =⇒ (3)

In the context of the noise problem we defined earlier, we are starting with condition (1), ie.
Z = RU (in this case k = l = n), and we would like to derive the probability density of Z. Note
that here we removed the µ from consideration because in machine learning we always assume
that the noise has a mean of 0. We leave it as an exercise for the reader to prove the case for an
arbitrary µ.

We will first start by relating the probability density function of U to that of Z. Denote fU(u) as
the probability density for U = u, and similarly denote fZ(z) as the probability density for Z = z.

One may initially believe that fU(u) = fZ(Ru), but this is NOT true. Remember that since there
is a change of variables from U to Z, we must make sure to incorporate the change of variables
constant, which in this case is the absolute value of the determinant of R. Incorporating this
constant, we will have the correct formula:

fU(u) = | det(R)|fZ(Ru)

Let’s see why this is true, with a simple 2D geometric explanation. Define U space to be the 2D
space with axes U1 and U2. Now take any arbitrary region R′ in U space (note that this R′ is
different from the matrix R that relates U to Z). As shown in the diagram below, we have some
off-centered circular region R′ and we would like to approximate the probability that U takes a
value in this region. We can do so by taking a Riemann sum of the density function fU(.) over
smaller and smaller squares that make up the region R′:

Mathematically, we have that

P (U ⊆ R′) =

∫∫
R′
fU(u1, u2) du1 du2 ≈

∑∑
R′

fU(u1, u2) ∆u1 ∆u2
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Now, let’s apply the linear transformation Z = RU, mapping the region R′ in U space, to the
region T (R′) in Z space.

The graph on the right is now Z space, the 2D space with axes Z1 and Z2. Assuming that the
matrix R is invertible, there is a one-to-one correspondence between points in U space to points in
Z space. As we can note in the diagram above, each unit square in U space maps to a parallelogram
in Z space (in higher dimensions, we would use the terms hypercube and parallelepiped). Recall
the relationship between each unit hypercube and the parallelepiped it maps to:

Area(parallelepiped) = | det(R)| · Area(hypercube)

In this 2D example, if we denote the area of each unit square as ∆u1∆u2, and the area of each unit
parallelepiped as ∆A, we say that

∆A = | det(R)| ·∆u1∆u2

Now let’s take a Riemann sum to find the probability that Z takes a value in T (R′):

P (Z ⊆ T (R′)) =

∫∫
T (R′)

fZ(z1, z2) dz1 dz2

≈
∑∑

T (R′)

fZ(z) ∆A

=
∑∑

R′

fZ(Ru) | det(R)|∆u1∆u2

Note the change of variables in the last step: we sum over the squares in U space, instead of
parallelograms in R space.

So far, we have shown that (for any dimension n)

P (U ⊆ R′) =

∫
. . .

∫∫
R′
fU(u) du1du2 . . . dun
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and
P (Z ⊆ T (R′)) =

∫
. . .

∫∫
R′
fZ(Ru) | det(R)|du1du2 . . . dun

Notice that these two probabilities are equivalent! The probability that U takes value in R′ must
equal the probability that the transformed random vector Z takes a value in the transformed region
T (R′).

Therefore, we can say that

P (U ⊆ R′) =

∫
. . .

∫∫
R′
fU(u) du1du2 . . . dun

=

∫
. . .

∫∫
R′
fZ(Ru) | det(R)|du1du2 . . . dun

= P (Z ⊆ T (R′))

We conclude that
fU(u) = fZ(Ru) | det(R)|

An almost identical argument will allow us to state that

fZ(z) = fU(R−1z) | det
(
R−1

)
| = 1

| det(R)|
fU(R−1z)

Since the densities for all the Ui’s are i.i.d, and U = R−1Z, we can write the joint density function
of Z as

fZ(z) =
1

| det(R)|
fU(R−1z)

=
1

| det(R)|

n∏
i=1

fUi
((R−1z)i)

=
1

| det(R)|
1

(
√

2π)n
e−

1
2
(R−1z)>(R−1z)

=
1

| det(R)|
1

(
√

2π)n
e−

1
2
z>R−T R−1z

=
1

| det(R)|
1

(
√

2π)n
e−

1
2
z>(RR>)−1z

Note that (RR>)−1 is simply the covariance matrix for Z:

Cov[Z] = E[ZZ>] = E[RUU>R>] = RE[UU>]R>= RIR>= RR>

Thus the density function of Z can be written as

fZ(z) =
1

| det(R)|
1

(
√

2π)n
e−

1
2
z>Σ−1

Z z
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Furthermore, we know that

| det(ΣZ)| = | det
(
RR>

)
|

= | det(R) · det
(
R>
)
|

= | det(R) · det(R)| = | det(R)|2

and therefore
fZ(z) =

1√
det(ΣZ)

1

(
√

2π)n
e−

1
2
z>Σ−1

Z z

1.2 Estimating Gaussians from Data
For a particular multivariate Gaussian distribution f(.), if we do not have the true means and
covariances µ,Σ, then our best bet is to use MLE to estimate them empirically with i.i.d. samples
x1,x2, . . . ,xn:

µ̂ =
1

n

∑
ti=k

xi

Σ̂ =
1

n

∑
ti=k

(xi − µ̂)(xi − µ̂)T

Note that the above formulas are not necessarily trivial and must be formally proven using MLE.
Just to present a glimpse of the process, let’s prove that these formulas hold for the case where we
are dealing with 1-d data points. For notation purposes, assume that D = {x1, x2, . . . , xn} is the
set of all training data points that belong to class k. Note that the data points are i.i.d. Our goal is
to solve the following MLE problem:

µ̂, σ̂2 = arg max
µ,σ2

P (x1, x2, ..., xn | µ, σ2)

= arg max
µ,σ2

ln
(
P (x1, x2, ..., xn | µ, σ2)

)
= arg max

µ,σ2

n∑
i=1

ln
(
P (xi | µ, σ2)

)
= arg max

µ,σ2

n∑
i=1

−(xi − µ)2

2σ2
− ln(σ)− 1

2
ln(2π)

= arg min
µ,σ2

n∑
i=1

(xi − µ)2

2σ2
+ ln(σ)

Note that the objective above is not jointly convex, so we cannot simply take derivatives and set
them to 0! Instead, we decompose the minimization over σ2 and µ into a nested optimization
problem:

min
µ,σ2

n∑
i=1

(xi − µ)2

2σ2
+ ln(σ) = min

σ2
min
µ

n∑
i=1

(xi − µ)2

2σ2
+ ln(σ)
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The optimization problem has been decomposed into an inner problem that optimizes for µ given
a fixed σ2, and an outer problem that optimizes for σ2 given the optimal value µ̂. Let’s first solve
the inner optimization problem. Given a fixed σ2, the objective is convex in µ, so we can simply
take a partial derivative w.r.t µ and set it equal to 0:

∂

∂µ

( n∑
i=1

(xi − µ)2

2σ2
+ ln(σ)

)
=

n∑
i=1

−(xi − µ)

σ2
= 0 =⇒ µ̂ =

1

n

n∑
i=1

xi

Having solved the inner optimization problem, we now have that

min
σ2

min
µ

n∑
i=1

(xi − µ)2

2σ2
+ ln(σ) = min

σ2

n∑
i=1

(xi − µ̂)2

2σ2
+ ln(σ)

Note that this objective is not convex in σ, so we must instead find the critical point of the objective
that minimizes the objective. Assuming that σ ≥ 0, the critical points are:

• σ = 0: assuming that not all of the points xi are equal to µ̂, there are two terms that are at
odds with each other: a 1/σ2 term that blows off to ∞, and a ln(σ) term that blows off to
−∞ as σ → 0. Note that the 1/σ2 term blows off at a faster rate, so we conclude that

lim
σ→0

n∑
i=1

(xi − µ̂)2

2σ2
+ ln(σ) =∞

• σ =∞: this case does not lead to the solution, because it gives a maximum, not a minimum.

lim
σ→∞

n∑
i=1

(xi − µ̂)2

2σ2
+ ln(σ) =∞

• Points at which the derivative w.r.t σ is 0

∂

∂σ

( n∑
i=1

(xi − µ̂)2

2σ2
+ ln(σ)

)
=

n∑
i=1

−(xi − µ̂)2

σ3
+

1

σ
= 0 =⇒ σ̂2 =

1

n

n∑
i=1

(xi − µ̂)2

We conclude that the optimal point is

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2

1.3 Isocontours
Let’s try to understand in detail how to visualize a multivariate Gaussian distribution. For sim-
plicity, let’s consider a zero-mean Gaussian distribution N (0,Σ), which just leaves us with the
covariance matrix Σ. Since Σ is a symmetric, positive semidefinite matrix, we can decompose it
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by the spectral theorem into Σ = VΛVT , where the columns of V form an orthonormal basis in
Rd, and Λ is a diagonal matrix with real, non-negative values. We wish to find its level set

f(x) = k

or simply the set of all points x such that the probability density f(x) evaluates to a fixed constant
k. This is equivalent to the level set ln

(
f(x)

)
= ln(k) which further reduces to

xTΣ−1x = c

for some constant c. Without loss of generality, assume that this constant is 1. The level set
xTΣ−1x = 1 is an ellipsoid with axes v1,v2, . . . ,vd, with lengths

√
λ1,
√
λ2, . . . ,

√
λd, respec-

tively. Each axis of the ellipsoid is the vector
√
λivi, and we can verify that

(
√
λivi)

TΣ−1(
√
λivi) = λiv

T
i Σ−1vi = λiv

T
i (Σ−1vi) = λiv

T
i (λ−1i vi) = vTi vi = 1

The entries of Λ dictate how elongated or shrunk the distribution is along each direction. In the case
of isotropic distributions, the entries of Λ are all identical, meaning the the axes of the ellipsoid
form a circle. In the case of anisotropic distributions, the entries of Λ are not necessarily identical,
meaning that the resulting ellipsoid may be elongated/shrunken and also rotated.

Figure 1: Isotropic (left) vs Anisotropic (right) contours are ellipsoids with axes
√
λivi. Images courtesy

Professor Shewchuk’s notes

1.4 Properties
Let’s state some well-known properties of Multivariate Gaussians. Given a JG random vector
Z ∼ N (µZ,ΣZ), the linear transformation AZ (where A is an appropriately dimensioned constant
matrix) is also JG:

AZ ∼ N (AµZ,AΣZA>)

We can derive the mean and covariance of AZ using the linearity of expectations:

µAZ = E[AZ] = AE[Z] = AµZ
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and

ΣAZ = E[(AZ− E[AZ])(AZ− E[AZ])>]

= E[A(Z− E[Z])(Z− E[Z])>A>]

= AE[(Z− E[Z])(Z− E[Z])>]A>

= AΣZA>

Note that the statements above did not rely on the fact that Z is JG, so this reasoning applies
to all random vectors. We know that AZ is JG itself, because it can be expressed as a linear
transformation of i.i.d. Gaussians: AZ = ARU.

Now suppose that we have the partition Z =

[
X
Y

]
whose distribution is given by Z ∼ N (µZ,ΣZ)

and

µZ =

[
µX

µY

]
,ΣZ =

[
ΣXX ΣXY

ΣYX ΣYY

]

It turns out that the marginal distribution of the individual random vector X (and Y) is JG:

X ∼ N (µX,ΣXX)

However, the converse is not necessarily true: if X and Y are each individually JG, it is not

necessarily the case that

[
X
Y

]
is JG! To see why, let’s suppose that X and Y are individually JG.

Thus, we can express each as a linear transformation of i.i.d. Gaussian random variables:

X = RXUX,Y = RYUY

we would expect that the expression for the joint distribution would be JG:[
X
Y

]
=

[
RX 0
0 RY

][
UX

UY

]
However, since we cannot guarantee that the entries of UX are independently distributed from the
entries of UY, we cannot conclude that the joint distribution is JG. If the entries are independently
distributed, then we would be able to conclude that the joint distribution is JG.

Let’s now transition back to our discussion of Z. The conditional distribution of X given Y (and
vice versa) is also JG:

X|Y ∼ N (µX + ΣXYΣ−1YY(Y − µY),ΣXX −ΣXYΣ−1YYΣYX)

If X and Y are uncorrelated (that is, if ΣXY = ΣYX = 0), we can say that they are independent.
Namely, the conditional distribution of X given Y does not depend on Y:

X|Y ∼ N (µX + 0Σ−1YY(Y − µY),ΣXX − 0Σ−1YY0) = N (µX,ΣXX)
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This also follows from the multivariate Gaussian pdf:

fZ

(
x
y

)
=

1

(
√

2π)n

∣∣∣∣∣ΣXX 0
0 ΣYY

∣∣∣∣∣
− 1

2

exp

−1

2

[
x y

]
>

[
ΣXX 0

0 ΣYY

]−1 [
x
y

]
=

1

(
√

2π)nx

∣∣∣ΣXX

∣∣∣− 1
2

exp
(
−1

2
x>Σ−1XXx

)
· 1

(
√

2π)ny

∣∣∣ΣYY

∣∣∣− 1
2

exp
(
−1

2
y>Σ−1YYy

)
= fX (x) · fY (y)

Note the significance of this statement. Given any two general random vectors, we cannot neces-
sarily say “if they are uncorrelated, then they are independent”. However in the case of random
vectors from the same JG joint distribution, we can make this claim.
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