
CS 189 Introduction to Machine Learning
Spring 2018 Note 8

1 Kernel Ridge Regression
In ridge regression, we given a vector y ∈ Rn and a matrix X ∈ Rn×`, where n is the number
of training points and ` is the dimension of the raw data points. In most settings we don’t want
to work with just the raw feature space, so we augment features to the data points and replace X
with Φ ∈ Rn×d, where φi

> = φ(xi) ∈ Rd. Then we solve a well-defined optimization problem
that involves Φ and y, over the parameters w ∈ Rd. Note the problem that arises here. If we have
polynomial features of degree at most p in the raw ` dimensional space, then there are d =

(
`+p
p

)
terms that we need to optimize, which can be very, very large (much larger than the number of
training points n). Wouldn’t it be useful, if instead of solving an optimization problem over d
variables, we could solve an equivalent problem over (potentially much smaller) n variables, and
achieve a computational runtime independent of the number of augmented features? As it turns
out, the concept of kernels (in addition to a technique called the kernel trick) will allow us to
achieve this goal. Recall the solution to ridge regression:

w∗ = (Φ>Φ + λI)−1Φ>y

This operation involves calculating Φ>Φ, which is a d×dmatrix and takesO(d2n) time to compute.
The matrix inversion operation takes an additional O(d3) time to compute. What we would really
like is to have an n × n matrix that takes O(n3) to invert. Here’s a simple observation: if we flip
the order of Φ> and Φ, we end up with an n × n matrix ΦΦ>. In fact, the matrix ΦΦ> has a very
intuitive meaning: it is the matrix of inner products between all of the augmented datapoints, which
in loose terms measures the “similarity” among of the datapoints and captures their relationship.
Now let’s see if we could somehow express the solution to ridge regression using the matrix ΦΦ>.

1.1 Derivation
For simplicity of notation, let’s revert back to using X instead of Φ (pretend that we are only
working with raw features, our analysis of kernel ridge regression still holds if we use just the raw
features). Rearranging the terms of the original ridge regression solution, we have

w = (X>X + λI)−1X>y

(X>X + λI)w = X>y

X>Xw + λw = X>y

λw = X>y −X>Xw

w =
1

λ
(X>y −X>Xw)

Note 8, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 1



w =
X>y −X>Xw

λ

w = X>
y −Xw

λ

which says that whatever w is, it is some linear combination of the training points xi (because
anything of the form X>v is a linear combination of the columns of X>, which are the training
points). To find w it suffices to find v, where w = X>v.

Recall that the relationship we have to satisfy is X>Xw − λw = X>y. Let’s assume that we had
v, and just substitute X>v in for all the w’s.

X>X(X>v) + λ(X>v) = X>y

X>XX>v + X>(λv) = X>y

X>(XX>v + λv) = X>(y)

We can’t yet isolate v and have a closed-form solution for it, but we can make the observation that
if we found an v such that we had

XX>v + λv = y

that would imply that this v also satisfies the above equation. Note that we did not “cancel the X>’s
on both sides of the equation.” We saw that having v satisfy one equation implied that it satisfied
the other as well. So, indeed, we can isolate v in this new equation:

(XX>+ λI)v = y =⇒ v∗ = (XX>+ λI)−1y

and have that the v which satisfies this equation will be such that X>v equals w. We conclude that
the optimal w is

w∗ = X>v∗ = X>(XX>+ λI)−1y

Recall that previously, we derived ridge regression and ended up with

w∗ = (X>X + λI)−1X>y

In fact, these two are equivalent expressions! The question that now arises is which expression
should you pick? Which is more efficient to calculate? We will answer this question after we
introduce kernels.

1.2 Linear Algebra Derivation
The previous derivation involved using some intuitive manipulations to achieve the desired answer.
Let’s formalize our derivation using more principled arguments from linear algebra and optimiza-
tion Before we do so, we must first introduce the Fundamental Theorem of Linear Algebra
(FTLA): Suppose that there is a matrix (linear map) X that maps R` to Rn. Denote N (X) as the
nullspace of X, andR(X) as the range of X. Then the following properties hold:

1. N (X)
⊥
⊕R(X>) = R` and N (X>)

⊥
⊕R(X) = Rn by symmetry

The symbol ⊕ indicates that we taking a direct sum ofN (X) andR(X>), which means that
∀u ∈ R` there exist unique elements u1 ∈ N (X) and u2 ∈ R(X>) such that u = u1 + u2.
Furthermore, the symbol ⊥ indicates that N (X) andR(X>) are orthogonal subspaces.

Note 8, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 2



2. N (X>X) = N (X) and N (XX>) = N (X>) by symmetry

3. R(X>X) = R(X>) andR(XX>) = R(X) by symmetry.

Here’s where FTLA comes, in the context of kernel ridge regression. We know that we can express
any w ∈ R` as a unique combination w = w1 + w2, where w1 ∈ R(X>) and w2 ∈ N (X).
Equivalently we can express this as w = X>v + r, where v ∈ Rn and r ∈ N (X). Now, instead of
optimizing over w ∈ R`, we can optimize over v ∈ Rn and r ∈ R`, which equates to optimizing
over n + ` variables. However, as we shall see, the optimization over r will be trivial so we just
have to optimize an n dimensional problem.

We know that w = X>v + r, where v ∈ Rn and r ∈ N (X). Let’s now solve ridge regression by
optimizing over the variables v and r instead of w:

v∗, r∗ = arg min
v∈Rn,r∈N (X)

‖Xw − y‖22 + λ‖w‖22

= arg min
v∈Rn,r∈N (X)

‖X(X>v + r)− y‖22 + λ‖X>v + r‖22

= arg min
v∈Rn,r∈N (X)

‖XX>v +��Xr− y‖22 + λ‖X>v + r‖22

= arg min
v∈Rn,r∈N (X)

(
v>XX>XX>v − 2v>XX>y + y>y

)
+ λ

(
v>XX>v +����2v>Xr + r>r

)
= arg min

v∈Rn,r∈N (X)

(
v>XX>XX>v − 2v>XX>y

)
+ λ

(
v>XX>v + r>r

)
We crossed out Xr and 2v>Xr because r ∈ N (X) and therefore Xr = 0. Now we are optimizing
over L(v, r), which is jointly convex in v and r, because its Hessian is PSD. Let’s show that this
is indeed the case:

∇2
rL(v, r) = 2I � 0

∇r∇vL(v, r) = ∇v∇rL(v, r) = 0

∇2
vL(v, r) = 2XX>XX>+ 2λXX>� 0

Since the cross terms of the Hessian are 0, it suffices that ∇2
rL(v, r) and ∇2

vL(v, r) are PSD to
establish joint convexity. With joint convexity established, we can set the gradient to 0 w.r.t r and
v and obtain the global minimum:

∇rL(v, r∗) = 2r∗ = 0 =⇒ r∗ = 0

Note that r∗ = 0 just so happens in to be in N (X), so it is a feasible point.

∇vL(v∗, r∗) = 2XX>XX>v∗ − 2XX>y + 2λXX>v∗ = 0

=⇒ XX>(XX>+ λI)v∗ = XX>(y)

=⇒ v∗ = (XX>+ λI)−1y

Note 8, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 3



Note that XX>+λI is positive definite and therefore invertible, so we can compute (XX>+λI)−1y.
Even though (XX>+λI)−1y is a critical point for which the gradient is 0, it must achieve the global
minimum because the objective is jointly convex. We conclude that

w∗ = X>(XX>+ λI)−1y

and arrive at the same solution as in the previous derivation.

1.3 Non-i.i.d. Case
So far we have assumed the special i.i.d. case of ridge regression, where

Y|W ∼ N (XW, σ2I), W ∼ N (0, σ2
hI)

In the non-i.i.d case we consider arbitrary covariance matrices:

Y|W ∼ N (XW,ΣZ), W ∼ N (0,ΣW)

As we’ve seen already, the solution in this case can be expressed in two forms, either the familiar
case

w∗ = (X>Σ−1Z X + Σ−1W)−1X>Σ−1Z y

or the case that we desire in kernel ridge regression

w∗ = ΣWX>(XΣWX>+ ΣZ)−1y

The principal difference in the non-i.i.d case is that we are computing XΣWX> as opposed to
XX>.

1.4 Kernels
Having derived the kernel ridge regression formulation for the raw data matrix X, we can apply
the exact same logic to the augmented data matrix Φ and replace the optimal expression with

w∗ = Φ>(ΦΦ>+ λI)−1y

Let’s explore the ΦΦ> term in kernel ridge regression in more detail:

ΦΦ>=


φ>1
φ>2
...
φ>n


φ1 φ2 . . . φn

 =


φ>1φ1 φ>1φ2 . . .

φ>2φ1
. . .

... φ>nφn


Each entry ΦΦ>ij is a dot product between φ(xi) and φ(xj) and can be interpreted as a similarity
measure:

ΦΦ>ij = 〈φi,φj〉 = 〈φ(xi), φ(xj)〉 = k(xi,xj)

Note 8, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 4



where k(., .) is the kernel function. The kernel function takes raw-feature inputs and outputs their
inner product in the augmented feature space. We denote the matrix of k(xi,xj) terms as the Gram
matrix and denote it as K:

K = ΦΦ>=


k(x1,x1) k(x1,x2) . . .

k(x2,x1)
. . .

... k(xn,xn)


Formally, k(xi,xj) is defined to be a valid kernel function if either of the following definitions are
met:

• There exists a feature map φ(.) such that ∀xi,xj, k(xi,xj) = 〈φ(xi), φ(xj)〉

• For all sets D = {x1,x2, . . . ,xn}, the Gram matrix K(D) is PSD

We will now state some basic properties of kernels.

• Given two valid kernels ka and kb, their linear combination

k(xi,xj) = αka(xi,xj) + βkb(xi,xj)

where α, β ≥ 0 is also a valid kernel. We can show this from the second property:

∀v ∈ Rn,v>(αKa + βKb)v = αv>Kav + βv>Kbv ≥ 0

• Given a positive semidefinite matrix Σ,

k(xi,xj) = φ(xi)
>Σφ(xj)

is a valid kernel. We can show this from the first property: φ̃(xi) = Σ
1
2φ(xi)

• Given a valid kernel ka,
k(xi,xj) = f(xi)f(xj)ka(xi,xj)

is a valid kernel. We can show this from the first property: φ̃(xi) = f(xi)φ(xi)

Computing the each Gram matrix entry k(xi,xj) can be done in a straightforward fashion if we
apply the feature map to xi and xj and then take their dot product in the augmented feature space
— this takes O(d) time, where d is the dimensionality of the problem in the augmented feature
space. However, if we use the kernel trick, we can perform this operation in O(` + log p) time,
where ` is the dimensionality of the problem in the raw feature space and p is the degree of the
polynomials in the augmented feature space.

Note 8, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 5



2 Kernel Trick
Suppose that we are computing k(x, z), using a p-degree polynomial feature map that maps `
dimensional inputs to d = O(`p) dimensional outputs. Let’s take p = 2 and ` = 2 as an example.
Define the polynomial feature map as

φ(x) =
[
x21 x22

√
2x1x2

√
2x1

√
2x2 1

]
>

the kernel function can be expressed as

k(x, z) = φ(x)>φ(z)

=
[
x21 x22

√
2x1x2

√
2x1

√
2x2 1

]
>
[
z21 z22

√
2z1z2

√
2z1

√
2z2 1

]
= x21z

2
1 + x22z

2
2 + 2x1z1x2z2 + 2x1z1 + 2x2z2 + 1

= (x21z
2
1 + 2x1z1x2z2 + x22z

2
2) + 2x1z1 + 2x2z2 + 1

= (x1z1 + x2z2)
2 + 2(x1z1 + x2z2) + 1

= (x>z)2 + 2x>z + 1

= (x>z + 1)2

We can compute k(x, z) either by

1. Raising the inputs to the augmented feature space and take their inner product

2. Computing (x>z + 1)2, which involves an inner product of the raw-feature inputs

Clearly, the latter option is much cheaper to calculate, taking O(` + log p) time, instead of O(`p)
time. In fact, this concept generalizes for any arbitrary ` and p, and for p-degree polynomial
features, we have that

k(x, z) = (x>z + 1)p

The kernel trick makes computations significantly cheaper to perform, making kernelization much
more appealing! The takeaway here is that no matter what the degree p is, the computational
complexity is the same — it is only dependent on the dimensionality of the raw feature space!

Note that we can equivalently express the degree-2 polynomial features problem using the more
natural mapping

φ̃(x) =
[
x21 x22 x1x2 x1 x2 1

]
>

in which case the kernel function would be expressed as

k(x, z) = φ̃(x)>Σφ̃(z) = (x>z + 1)2, Σ = Diag
(

1 1 2 2 2 1
)

Thus we can view kernel ridge regression with the kernel trick in two ways:

1. i.i.d. prior W ∼ N
(

0,Diag
(

1 1 1 1 1 1
))

, using the feature mapping φ(x)

Note 8, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 6



2. non-i.i.d prior W ∼ N
(

0,Diag
(

1 1 2 2 2 1
))

, using the feature mapping φ̃(x)

(note that the kernel trick is only applicable for this specific setting of Σ — it does not
necessarily apply to arbitrary Σ.)

2.1 Computational Analysis
Back to the original question: in ridge regression, should we compute

w∗ = Φ>(ΦΦ>+ λI)−1y

or
w∗ = (Φ>Φ + λI)−1Φ>y

Let’s compare their computational complexities. Suppose you are given an arbitrary test point
z ∈ R`, and you would like to compute its predicted value ŷ. Let’s see how these values are
calculated in each case:

1. Kernelized

ŷ = 〈φ(z),w∗〉 = φ(z)>Φ>(ΦΦ>+ λI)−1y =
[
k(x1, z) . . . k(xn, z)

]
(K + λI)−1y

Computing the K term takes O(n2(` + log p)), and inverting the matrix takes O(n3). These
two computations dominate, for a total computation time of O(n3 + n2(`+ log p)).

2. Non-kernelized
ŷ = 〈φ(z),w∗〉 = φ(z)>(Φ>Φ + λI)−1Φ>y

Computing the Φ>Φ term takes O(d2n), and inverting the matrix takes O(d3). These two
computations dominate, for a total computation time of O(d3 + d2n).

Here is the takeaway: if d� n, the non-kernelized method is preferable. Otherwise if n� d, the
kernelized method is preferable.

Note 8, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 7


	Kernel Ridge Regression
	Derivation
	Linear Algebra Derivation
	Non-i.i.d. Case
	Kernels

	Kernel Trick
	Computational Analysis


